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ABSTRACT 
 
Airborne high-resolution thermal infrared (TIR) remote sensing has proven to be an 
effective method for mapping surface spatial temperature patterns. As geothermal 
energy continues to be a source of safe, reliable and renewable source of energy 
world over, TIR remote sensing has formed a key component of geothermal 
exploration. When combined with other spatial datasets, the TIR data showed areas 
of thermal influence resulting from geothermal activity associated with point, area 
and linear sources such as fumaroles, hot ground, fissures and faults. This paper 
describes the image acquisition and processing methodology, of high-resolution 
airborne thermography conducted over 2000 km2 within the Silali geothermal 
prospect. The objective of the study was to characterize the geothermal features for 
further focused geothermal exploration studies. 

 
 
1.  INTRODUCTION 
 
Thermal infrared (TIR) remote sensing provides data with synoptic coverage for investigating the 
surface manifestations of geothermal systems as applied to both geothermal energy exploration and also 
for more fundamental research and monitoring. TIR remote sensing provides a method for rapid 
mapping and quantifying surface geothermal features in support of exploration and assessment of new 
resources (Eneva et al., 2006; Kratt et al., 2006; Coolbaugh et al.,2007; Eneva et al., 2007; Rockwell 
and Hofstra, 2008; Kienholz et al., 2009; Littlefield and Calvin, 2009; Scherer et al., 2009; Taranik et 
al., 2009; Littlefield and Calvin, 2010; Haselwimmer et al., 2011; Reath and Ramsey, 2011). 
 
Airborne thermal infrared remote sensing is a proven method of obtaining high-spatial resolution 
thermal imagery. Several applications using thermal imagery can be found in the literature. For example, 
Torgesen et al, 2001, used airborne thermal remote sensing to assess water temperatures in rivers and 
streams, related to fisheries habitat. Quattrochi and Luvall, 2003 presented several applications using 
airborne and satellite based thermal infrared applications to retrieve surface parameters and processes. 
This project was undertaken in Silali geothermal prospect in the Northern sector of the Kenyan Rift as 
shown in Figure 1. Previous integrated geophysical, geological and geochemical studies in the area 
(Lagat et al.,2010, Dunkley et al.,1993), indicated existence of a geothermal resource under Silali caldera 
which extends to the eastern flanks of the volcano.The results signified probable occurrence of a high 
temperature geothermal resource and recommended the prospect for further detailed investigations to 
determine its resource potential.
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2.  DATA COLLECTION 
 
2.1  Description of the airborne remote sensing 
system 
 
For this survey, a DigiTHERM thermal camera 
system was used (Figure 2). DigiTHERM is a 
camera developed for professional digital aerial 
thermography (IGI, 2013).  
 
Its core component is an Infratec VarioCAM with 
640 x 480 pixel field of view and 7.5 to 14 µm 
wavelengths and 30 mm focal length (InfraTec, 
2013). With thermal resolution of 0.05K, the camera 
senses temperature in the range from -40°C to 
1200°C. The uncooled microbolometer FPA-
detector delivers thermal images in system-specific 
*.irb format. A graphical user interface allows real 
time preview and check of recorded thermal images.  
 
The camera was mounted in a nadir looking position 
on a high–grade aluminum/carbon composite 
installed through a portal in the belly of a two engine 
Piper PA-31 Turbo Navajo aircraft chartered from 
Photomap International Ltd. (Andrea et al., 2012).   
 
The thermal camera was operated via graphical user 
interface running on touch screen monitors (Figure 
3) connected to the DigiCONTROL Sensor 
Management Unit (SMU). The raw thermal 
information was stored in  240GB Solid State 
Devices (SSD). For precise determination of 
position and altitude of the airborne sensor at the 
instant of exposure, the AERO control system used 
an Inertial Measurement Unit (IMU) for post 
acquisition georeferencing, orthorectification and 
mosaicking of the individual thermal images.  
 

  

 

Project area 

 

FIGURE 1: Map of the northern sector of the Kenya
Rift showing the project area (modified from 

Dunkley et al.,1993) 

FIGURE 2: Thermal system equipment layout 
in the aeroplane 
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2.2.  Image Acquisition  
 
High resolution thermal infrared images were recorded over an area of 2000 km2 over the Silali 
geothermal prospect. A total of 32 flight lines each 50 km long where planned to ensure 25% side lap 
and 80% forward lap to guarantee complete coverage of the study area as shown in Figure 4. Other 
parameters are as outlined in Table 1.   
 
 

TABLE 1:  Key survey parameters 
 

Survey parameters Value 
Altitude above ground 3,600 m 
Flight altitude above mean sea level 4,500 m 
Number of flight lines 32 
Length of flight lines 50 km 
Distance between flight lines 1,340 m 
Distance between midpoints two thermal images 270 m 
Mean GSD (ground sampling distance/ pixel size) 3 m 
Field of view per image 1920 m by 1440 m 
Number of triggered raw thermal images 6,236 

 
In order to minimize influence of sun-dependent heating of the ground surface during daytime, the image 
acquisition over-flights were conducted during the second half of the night time hours (3:00 am to 6:00 
am) and under clear sky conditions from 26th to 28th January 2012, This was to ensure that the thermal 
images are recorded at a time when the radiative cooling of the surface has been attained. Reference 
temperature thermal images and  infrared thermometer measurements were carried out at Lake Baringo 
where surface water temperatures were recorded at hourly intervals on 28th January in the same site 
where a reference flightline of thermal images was also recorded.   

 
FIGURE 3: Touch screen monitors for operating the Thermal camera and the camera hatch 

as seen from below the aeroplane 
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3.  IMAGE PROCESSING 
 
The individual spectral images from the DigiTHERM camera was stored in system specific format 
“*.irb” at a mean of 3-meter pixel resolution. Pre-processing was conducted for all the raw thermal 
images and calculation of orientation parameters for every single thermal image with IGI AERO office 
software with input data been the IMU records. After conversion of all raw thermal images to 8 bit and 
16 bit *.tiff, direct geo-referencing of all single thermal images was done. This was followed the 
procedures outlined below: 
 
a. Mosaicking of all 6,236 single ortho thermal images with automatic calculation of seam lines but 

without radiometric correction of camera lens' vignetting; resulted in ortho thermal image mosaic 

FIGURE 4: Landsat TM image (bands 421, RGB) 
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(16 bit *.GeoTiff format) with visible seam lines. The mosaic was radiometrically unaltered and 
served as base for further temperature calibrations (step b), 

b. From radiometrically uncorrected mosaic, the 16 bit digital number values of the mosaic's pixels 
were transformed to temperature ranges using temperature range function developed from 
relationship of image digital numbers and reference temperatures measurements (Figure 5). The 
result was a mosaic of thermal images, in which pixel values represented the surface temperatures.  

c. In a parallel processing line, radiometric correction was applied in order to avoid visible seam lines. 
The output format was a 16 Bit GeoTiff. This mosaic showed a balanced grayscale distribution 
controlled by temperature relations but not absolute temperatures  
 
 

 
 

 
 
 

4.  RESULTS AND DISCUSSION 
 
From the mosaicked thermal images more than 1000 thermally anomolous areas where identified from 
automatic screening. This outlined areas which were considered for further analysis of individual or 
smaller mosaics of thermal images and validated through field visits.   
 
4.1  Analysis of single/mosaicked images of selected sites 

 
Using the single thermal images or small scale mosaics of the anomalous areas as obtained from the 
automatic screening, detailed analysis gave more insights into these thermally anomalous areas as 
outlined below for areas A and B outlined in Figure 6. 
  

FIGURE 5: Temperature range function developed to convert 16 bit digital number values of 
pixels of single thermal images and of thermal mosaic to temperature values 
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FIGURE 6: Thermal anomalies from the mosaicked image 
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Fumarole field SF 5 before was known as single “hot spot”. The measured temperature of fumarole SF 5 
was 80°C, this showed the averaging of temperatures of the ground cells covered by pixel of a single 
thermal image. However, the thermal image revealed that SF 5 is a very complex system and not a single 
feature, most probably (Figure 7). Five nearly linear thermal features were recognizable on the thermal 
image (solid white arrows; dashed white arrows for indistinct lineament). The area of thermally 
anomalous temperatures is 1.0 km by 0.5 km wide. Highest pixel temperature of 18.15°C was recorded 
at E 191538 N 129837.General surface temperature of surrounding area was between 10 to 11°C. Areas 
with pixel temperatures higher than 14.20°C are highlighted on the thermal image and spot image (Figure 
8) and show the whole extend of the system.  

FIGURE 7: Thermal ortho-image of Area A 

FIGURE 8: Thermal anomalies over Spot 5 image of Area A 
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The area marked on the thermal image (Figures 9 and 10) showed the highest pixel temperatures of 18°C 
and area marked b also showed elevated temperatures of 15°C to 16°C. The highest temperature was 
measured directly at a junction of two linear features (marked with B) and the others outlined by the 
arrows. The thermal anomalies followed the dense NNE-SSW trending fault lines and fissures in this area. 
Therefore, we suppose that the linear fault lines and fissures are the conduits of the recorded thermal 
anomalies in this region associated with magma at depth. This approach was applied for the different 
thermal anomalies identified after the thermal screening for in-depth understanding.  

 
 
5.  CONCLUSIONS 
 
Airborne thermal infrared remote sensing has the flexibility to provide imagery with reasonably high 
spatial resolution which was valuable in locating unidentified thermal anomalies in Silali geothermal 

 
FIGURE 10: Thermal anomalies over Spot 5 image of Area B 

 
FIGURE 9: Thermal ortho-image of Area B 
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prospect. Thermal anomalies in the Eastern flanks of the caldera was mapped which was found to be 
related with the intense fissures and fault system in the area. Also already known fumaroles and hot 
grounds were revealed from the thermal survey that they covered extensive areas that known before. 
The discovered thermal anomalies complemented earlier exploration works in the area and helped in 
characterizing surface thermal anomalies and understanding of thermal relationships that were not 
known before. The use of high resolution TIR remote sensing was not separated from other aspects of 
science (geology, geochemistry, and geophysics). Therefore, TIR remote sensing provided a unique tool 
for qualitative and quantitative initial investigations contributing to detailed geothermal exploration 
surveys in geothermal exploration. The surface geothermal activity from TIR was also used to refine the 
interpretation and conceptualization of results from other exploration approaches. The obtained airborne 
TIR data will also be used to support long term monitoring of geothermal system in the prospect by 
providing repeatable method of inventorying surface geothermal features.  
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