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ABSTRACT 
 

Air-lift pumping and air compression are two techniques used to initiate flow 
from medium- and high-temperature geothermal wells. This paper aims to 
explain further the thermodynamic concepts of these methods. Spreadsheet 
models were developed to gain understanding of the technical requirements 
for a successful well discharge, and in planning the aforementioned methods 
of stimulation. 

 
 
 
1. INTRODUCTION 
 
Geothermal wells are the conduit for geothermal fluids to flow from the 
reservoir to the surface. They can be characterized into: low temperature (< 
150°C), medium temperature (150-200°C) and high temperature (> 200°C) 
wells. Figure 1 illustrates a typical schematic diagram of a casing program 
for a high-temperature geothermal well. The low-temperature wells are 
used for district heating or direct use and high-temperature wells for power 
generation. These wells can be further subdivided based on the formation 
pressure into two: artesian and non-artesian wells. Artesian wells are wells 
which have a water level above the surface and will flow when the wellhead 
valve is opened. Non-artesian wells have a water level below the surface 
and must be pumped or stimulated in order to self-flow. Some non-artesian 
wells will build up gas or steam pressure on top when shut-in and will flow 
when opened, due to boiling deep in the well (Steingrímsson, 2015). 
Figures 2 and 3 show typical pressure per depth plots of artesian and non-
artesian wells for both low- and high-temperature wells, respectively.  
 
Some high-temperature geothermal wells are capable of self-discharge or 
are simply self-flowing wells. These wells are usually from vapour-
dominated systems and those within the naturally-two-phase regions of 
1iquid-dominated reservoirs. Many wells, however, are non-artesian. 
Discharge of these wells can often be initiated by certain methods (Buning 
et al., 1998).

FIGURE 1: Schematic 
diagram of a 

geothermal well
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Air-lift pumping and air compression are two methods commonly employed to initiate discharge from 
geothermal wells. Both methods involve air injection into the well using an air compressor. With the 
air-lift pumping method, air is injected through a coiled tubing or a drill pipe run into the well to a depth 
below the water level. The low-density air will lift the water out the well to initiate self-flow, once it is 
hot enough so boiling of the water supplies sufficient steam to overtake the “air-lifting”. With the air 
compression stimulation, air is injected through a valve (kill line) on the wellhead, depressing the water 
level. The cold water is pushed down into the hot part of the well to reach the formation temperature at 
that depth, eventually allowing the well to self-flow once the pressure is rather rapidly released and 
boiling in the water lifts the fluid to the surface.  
 
 
 
2. OBJECTIVE 
 
The objective of the study is to explain the thermodynamics behind the two methods: air-lift pumping 
and air compression. What are the technical requirements for a successful discharge by air-lifting and 
compressing of the well?  
 
For the air-lift pumping the questions are, what submergence (distance below the water table) the coiled 
tubing or drill pipe is required, and what air-compressor rating (pressure and air flow) is necessary for 
a successful discharge? For air compression, the questions are; what air-compressor rating is required 
for a certain job and how long does it take to compress a well from zero (initial) to final pressure? What 
is the minimum water level suppression required to discharge the well successfully by compression 
alone? What other key factors need to be considered for a well to attain successful discharge and to 
maintain self-flow? 

FIGURE 2: Artesian and non-artesian wells for 
low-temperature systems 

(Steingrímsson, 2015) 

FIGURE 3: Artesian and non-artesian wells for 
high-temperature systems 

(Steingrímsson, 2015) 
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3. METHODOLOGY 
 
The two methods, air-lift pumping and air compression, will be explained operationally and technically, 
using concepts learned from thermodynamics and fluid dynamics. Literature research will be the first 
step in describing these concepts. The discussion will focus on what is really happening inside the 
wellbore.  
 
Spreadsheet models were developed as part of this report to aid in the analysis and guide the design of 
these two procedures. MS Excel will be used to develop these models together with X-Steam, an add-in 
function in Excel for steam properties (http://xsteam.sourceforge.net/). The first spreadsheet model for 
air-lift pumping aims to simulate success of the air-lift operation, if the flow will reach the surface after 
inputting certain parameters, such as air volume injected trough the coiled tubing below the water level 
in the well. The second spreadsheet model for the air compression aims to simulate how much air 
volume, or what capacity of compressor is needed to compress a well, given the initial and desired 
pressure and compressor time. The third spreadsheet model, also for air compression aims to simulate 
success of air compression, if the pressure profile attained immediately after the air discharge is 
sufficient for the well to self-flow, given the reservoir formation temperature and pressure. The fourth 
spreadsheet model was developed to simulate the flowing pressure and temperature profile from the 
bottom to the top of the well. This is a two-phase simulator that aims to answer whether the well will 
sustain self-flow or not. The HOLA wellbore simulator program (Björnsson et al., 1993) was also used 
to calculate the temperature and pressure profiles of flowing wells. The spreadsheet model results are 
compared to the HOLA results and to actual measurements made in flowing wells (dynamic logs). 
 
Actual field data gathered from initiating jobs for wells to flow and flowing wells in the Philippines are 
used for this project to confirm the model predictions. Data, such as initial wellhead pressure, downhole 
temperature and pressure logs, duration of stimulation method, target wellhead pressure, compressor 
rating etc., will be used. The data are analysed and serve as an actual example after learning the physics 
behind the stimulation process.  
 
 
 
4. AIR-LIFT PUMPING 
 
In air-lift pumping or gas-lifting, coiled tubing, drill pipes, or hoses are run into the hole from the 
wellhead to depths below the water level in the well. Compressed air or nitrogen gas is then injected 
through the pipes, causing the water column in the annulus to bubble as the air flows back to the surface. 
The fluid density at the water/air column will then decrease, causing the aerated fluid level to rise. This 
method is commonly applied to freshwater wells, often referred to as air-lift pumping.  In the oil 
industry, this type of method is also used for producing oil wells that have stopped producing because 
of severe pressure drawdown in the reservoir (Sarmiento, 2011). The schematic diagram for the typical 
air-lift pumping in freshwater wells is shown in Figure 4. The arrangement in geothermal wells is similar 
except the production casing serves as the eductor pipe and the wellhead diverter is more robust. 
 
The common terms are the following: 
 

 Discharge level is the level where the discharge line is. 
 Static water level is the depth where the water level is at static condition. 
 Pumping water level is the depth where the water level is during air-lift pumping. 
 Eductor pipe is a temporary pipe installed in large diameter groundwater wells but is not practical 

to install in high-temperature geothermal wells. 
 Air line is the coiled tubing, drill pipe, or hose installed from the wellhead to set depth below the 

water level. 
 Starting submergence is the length of the air line submerged below the static water level. 
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 Pumping submergence is the length of the 
air line submerged below the pumping 
water level. 

 Total starting lift is the distance from the 
discharge level to the static water level. 

 Total pumping lift is the distance from the 
discharge level to the pumping water level. 

 
To start and maintain air-lift pumping, air 
pressure and volume flow rate are essential. To 
overcome the initial pressure the air pressure 
must reach the starting submergence pressure at 
the lower end of the air line. The air volume flow 
rate injected becomes the most essential factor in 
the success of an air-lift pumping after the 
pressure has initiated flow (Australian Drilling 
Industry Training Committee, Ltd., 1997). Figure 
5 shows how the addition of different volumes of 
air affects the water flow pattern in the borehole. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

FIGURE 4: Schematic diagram of a typical air-
lift pumping set-up with the common terms used 

(Ingersoll-Rand, 1971, in Driscoll, 1986) 

FIGURE 5: This diagram shows how 
the two-phase (air and water) flow 
behaves during air-lift pumping;    

(a) Introduction of air into the well 
shows no change at the water level 
because the first air injected is just 

enough to overcome the initial head 
exerted by the water column; (b) As 
the volume of injected air increases, 
the water becomes partly aerated as 

it rises up the well; (c) Aerated water 
surges or is lifted out of the casing 

irregularly as the air injected further 
increases; (d) If injected air is 

sufficient, aerated water will flow 
steadily out of the well, but note that 
excessive air volume might actually 

decrease the flow rate of water 
(Driscoll, 1986) 
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5. AIR COMPRESSION 
 
Stimulation by air compression involves mobilizing and connecting a high-pressure air compressor to 
the wellhead. The air injected will cause the cold water column to be pressed down and into the hotter 
portion of the well. The well is then shut for hours or days to give ample time for the suppressed cold 
water to heat up. If the fluid heats up to a sufficient temperature, it should overcome pressure and heat 
losses as it rises up the wellbore and initiate boiling. Once the valve of the well is opened for discharge, 
the flow should reach the surface if the attempt for discharge is successful (Sarmiento, 2011).  
 
Prior to the start of compression, the field engineer shall gather the relevant well information for the 
stimulation work, such as casing burst pressure, branch limit pressure, wellhead conditions, target 
wellhead pressure, temperature and pressure profile of the well, casing depth, etc. The engineer and 
operators shall mobilize the air compressor to the site with all the accessories: pressure rated hose, swivel 
joints and pipe, wing valve adaptor, fuel, stud bolts, seal ring and other necessary tools. The set-up of 
the air compressor, and the arrangement of the swivel joints and pipe from the valve of the well to be 
compressed to the discharge line of the air compressor, shall be planned accordingly and have whip-
stop cables on connections for safety. After the installation of the pressure rated hose, swivel joints, and 
pipes, the connections should be checked for leakages and if they are securely in place. The installed 
pressure gauges at the wellhead must also be inspected to ensure that they are in good working condition 
and calibrated. 
 
The wellhead pressure build-up should be monitored during the compression. The engine and the 
discharge line going to the well should be checked for any abnormal conditions. Leaks should also be 
checked and repaired immediately if any are observed. The pressure in the discharge line should be 
released before the repairs. The switch on the air compressor should be changed from load to unload 
after achieving the desired wellhead pressure of the well. The pressure build-up on the wellhead can 
take hours or days, depending on the capacity of the compressor and the wellhead pressure considered 
necessary to stimulate the well to flow. When the wellhead pressure is reached, the well is kept shut-in 
for a number of hours or days (sometimes a week) for heating up until the well is ready for discharging.  
 
Figure 6 shows a hypothetical 
well pressure and temperature 
profiles prior to and after air 
compression. The wellhead 
pressure prior to air 
compression is 1 bar-a and the 
water level is at 500 m with a 
temperature of about 80°C, at 
that depth. During the air 
compression, the wellhead 
pressure rises up to 70 bar-a 
and the water level becomes 
depressed to 1500 m, to the 
production casing shoe, where 
the temperature is about 
300°C. At around 1400-1600 
m, the temperature profile 
overlaps with the boiling point 
depth curve, which indicates a 
tendency of boiling around 
that depth.  
 
The water column that is depressed encounters high formation temperature which increases its energy 
content (enthalpy). The rapid release of pressure is made by opening the valve at the wellhead and 

FIGURE 6: Temperature and pressure downhole profiles of  
a non-artesian well prior to air compression 
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allowing the air to escape. Pressure reduction then occurs which causes the fluid to flow up the wellbore. 
Some of the water flashes to steam due to the energy released during pressure reduction (Colina et al., 
2008). The boiling process for the model calculations is adiabatic (iso-enthalpic) as the heat loss is minor 
from the well to the formations. 
 
The maximum depth to which the water level can be compressed is down to the first loss zone, but 
typically only down to the depth of the production casing shoe, because the next section is the open hole 
with a slotted liner, and air injected there will just diffuse out into the formation. Usually, the well is 
compressed to the maximum allowable pressure, taking in consideration the pressure rating of the 
discharge lines and of the wellhead.  
 
 
 
6. MODELS 
 
Spreadsheet models are developed as part of this report for air-lift pumping, air compression, and two-
phase simulation. The design, formulas, input and output parameters are discussed in the following 
sections. Practical guidelines or “rules of thumb” from handbooks/guidelines were used to select 
parameters to be used for a successful air-lift pumping. To verify the two-phase simulator model results 
a wellbore simulator program called HOLA, and dynamic well logging measurements were used. 
 
 
6.1 Air-lift 
 
6.1.1 Rule of thumb  
 
Guidelines for designing air-lift pumping operations have been established based on field experience as 

described by Driscoll’s "Groundwater and 
wells (1986 - 2nd ed.)" book and the manual 
from the Australian Drilling Industry 
Training Committee Ltd. (1997) entitled 
"Drilling: the manual of methods, 
applications, and management". The 
design procedure will be explained by the 
following example. 
 
To overcome initial head created by the 
submergence of the air line into boreholes 
90-120 m deep, the compressor used for air 
supply should have a minimum pressure of 
8.6 bars. The air volume flow rate is the 
most important factor in successful air-lift 
pumping once the pressure initiates flow. 
The rule of thumb is that for each 0.063 L/s 
(1 gpm) of water, the proper compressor 
capacity for air-lift pumping is to provide 
about 0.35 L/s (3/4 cfm) of air. 
 
The total pumping lift, the pumping 
submergence, and the cross-sectional area 
of the casing are the factors to be 
considered for the air volume requirement 
to operate air-lift pumping efficiently in 
freshwater wells. Figure 7 shows the 
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L/s (1 gpm) of water for various submergence percent 
and total pumping lift combinations (modified from 

Ingersoll-Rand, 1971, in Driscoll, 1986) 
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graphical relation of some of these factors. For maintaining steady flow, the air-volume requirements 
will usually be greater than those given in the figure. The actual volume of air required may be two to 
three times the volume shown in the figure for deep boreholes with low static water levels. Table 1, on 
the other hand shows the suggested sizes of eductor pipes (not applicable as the casing is used) and air 
line for air-lift pumping, but some changes in sizes may be necessary for practical reasons.  

 
TABLE 1: Recommended pipe sizes for air-lift pumping (modified from Driscoll, 1986) 

 

Pumping rate* 
Size of well casing if 
eductor pipe is used 

Size of eductor pipe (or 
casing if no eductor pipe 

is used) 

Minimum size 
of air line 

gpm L/s in mm in mm in mm 
30-60 1.8-3.79 4 102, or larger 2 51 ½ 13 
60-80 3.79-5.05 5 127, or larger 3 76 1 25 

80-100 5.05-6.31 6 152, or larger 3 ½ 89 1 25 
100-150 6.31-9.46 6 152, or larger 4 102 1 ¼ 32 
150-250 9.46-15.8 8 203, or larger 5 127 1 ½ 38 
250-400 15.8-25.2 8 203, or larger 6 152 2 51 
400-700 25.2-44.2 10 254, or larger 8 203 3 64 

700-1000 44.2-63.1 12 305, or larger 10 254 3 64 
1000-1500 63.1-94.6 16 406, or larger 12 305 4 102 

*Actual pumping rate is dependent on percent submergence 
 
The length of the air line below the pumping water level, divided by the total length of air line suspended 
in the well, and multiplied by 100 is equal to the pumping submergence percentage. When the pumping 
submergence is about 50 percent, the air-lift pumping is quite efficient for wells with about 60-150 m 
of total pumping lift and 40 percent for 150-270 m. Figure 8 shows the guideline for optimum 
submergence for a given pumping lift.  

 
Not taking time to analyse and consider the operational characteristics of an air-lift may lead to 
inefficient pumping, lost time, and in some cases, failure to pump any water. The example below from 

FIGURE 8: This graph serves as a guideline of pumping submergence for optimum air-lift 
efficiency (modified from Ingersoll-Rand, 1971 in Driscoll, 1986) 
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Driscoll's book "Groundwater and wells”, shows the 
factors that should be considered for designing a 
successful air-lift pumping operation. 
 
Figure 9 shows, as an example, a 254-mm (10-in) 
diameter cased well with a total depth of 123 m and 
screened from 110 to 123 m. Static water level is at 30 
m. It is decided to air-lift pump at a rate of 38 L/s (600 
gpm), 20 percent above the design rate of 31.5 L/s (500 
gpm). Pumping water level would be at 61 m. The 
following are the steps for selecting the proper size of 
equipment for air-lift and for estimating the potential 
efficiency of the system: 
 

 Step 1 is to determine the diameter of the eductor 
pipe, if required, and the air line. Use Table 1 for 
this step. It shows that a 203-mm (8-in) eductor 
and a 76-mm (3-in) air line should be used for the 
254-mm (10-in) casing. A smaller diameter 
eductor can be chosen, but the air-pressure 
requirements would rise because of the additional 
friction effects. 

 Step 2 is to determine the length of the eductor 
pipe and the air line. The bottom of the eductor 
pipe is set at 122 m, reasonable distance above the 
bottom of the screen, with the air line set at 120 
m.  

 Step 3 is to determine the submergence. 
 

 
 
The pumping submergence is given by this formula: 

 
 

 
%	 	

	
100 (1)

 

	
120 61
120

 
 

≈ 50% 
 

Figure 8 shows that at this pumping submergence, the air-lift will be reasonably efficient considering 
that the volume of water pumped is acceptable. 
 

 Step 4 is to determine the air-volume requirements. Figure 7 shows that for a total pumping lift 
of 61 m and pumping submergence of about 50%, 0.47 L/s (1 cfm) of air is required to pump 
0.063 L/s (1 gpm) of water. Thus, 283 L/s (600 cfm) of air are required to pump 38 L/s (600 gpm) 
of water. 

 Step 5 is to determine whether the compressor has sufficient pressure to initiate flow in the air 
line. 

 

 	
	 	 	 	 9.8 	

100000
 

(2)

 

1000 9.8	 120.4 30.48 /100000 
 

= 8.8 bar 

FIGURE 9: Sample well for air-lift 
designing (modified from Driscoll, 1986)
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The minimum pressure requirement to start the air-lift for the starting submergence chosen is at 8.8 bar, 
and a safety factor of 25% is usually added to this pressure figure. The pressure requirement decreases 
almost by half once the flow has been established as the head acting on the air line decreases.  
 
To have some assurance that the air-lift development procedures will work as desired, the steps 
mentioned above must be done properly. The steps, including the design and operational parameters, 
however, are not mathematically precise. Thus, the air-lift design may have to be changed depending on 
the well condition or available equipment. The engineer must be prepared to make appropriate 
adjustments. Generally, the air-lift pumping will be most efficient if the static water level is high, the 
casing diameter is relatively small, and the capacity of the compressor is adequate.  
 
6.1.2 Spreadsheet model 
 
A spreadsheet model was made as a part of this report to simulate the success of an air-lifting operation. 
The input parameters are: the volume rate of air to be injected, air line setting depth, pressure and 
temperature at the air line setting depth, and the expected water flow from the wellbore. After inputting 
the said parameters, the model will calculate the pressure versus depth up to the surface based on the 
density profile. It will show whether the input parameters are sufficient to make the fluid flow to the 
surface or not. A successful discharge will yield a minimum of 2 bar-a, at the wellhead. 
 
The pressure at depth h is calculated by using the formula: 
 

  (3)
 

where P  = Pressure (bar-a); 
 Po  = Pressure at deeper depth (bar-a); 
 ρ  = Density of two-phase flow (kg/m3); 
 g  = Acceleration of gravity (9.8m/s2); 
 h  = Depth (m). 
 
The air volume per depth is calculated using the ideal gas law: 
 

  (4)
 

By isolating the air volume (V), the equation will be: 
 

 
 (5)

 

where V  = Air volume per second (L/s); 
 n  = Number of moles per second (n/s); 
 R  = Universal gas constant (0.08314 L bar/K mol);  
 T  = Temperature (K); 
 P  = Pressure (bar-a). 
 
The number of moles per second is calculated from the input parameters of the air volume injected. 
After inputting the air volume at standard cubic feet per minute (scfm) for the compressor, it will be 
converted to litres per second (L/s) and then finally to number of moles per second. One mole of an ideal 
gas will occupy 22.4 L at standard temperature (0°C) and pressure (1 atm) so the volume in L/s will be 
divided by 22.4 L to get the number of moles. The output rating of air compressors is reported in standard 
cubic feet per minute (scfm) but the criteria for “standard” temperature varies, either 0°C (STP) or in 
the United States 68°F but the pressure is always 1 atm. The former criterion is used in this report. 
 
The density of the two-phase flow is calculated using the formula: 
 

 
 (6)
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where ρ  = Density of two-phase flow (kg/L); 
 M  = Total mass flow of air and water (kg/s);  
 V  = Total volume of air and water (L/s). 
 
The total mass flow is equal to the sum of the air injected in kg/s and the mass flow rate of water. The 
density of water is retrieved from steam tables (X-Steam) based on the temperature given. The total 
volume is found by adding the air volume injected and the assumed water flow.  
 
The submergence depth is calculated using the formula: 
 

 
 (7)

 

where  S  = Submergence depth, length of air line submerged in water (m); 
 h  = Air line setting depth (m);  
 P  = Pressure at the air line setting depth (bar-a); 
 ρ  = Density of water (kg/m3);  
 g  = Acceleration of gravity (9.8 m/s2). 
 
The pumping submergence percentage is calculated by dividing the submergence depth by the air line 
setting depth, then multiplying it by 100. 
 
In addition to the plot of pressure versus depth in the wellbore, the pressure inside the air line is also 
plotted. The initial pressure required at the wellhead to be supplied by the compressor is calculated by 
adding the pressure drop to the pressure at the submergence depth. The pressure drop in the compressed 
air line is calculated by using the empirical formula (modified from The Engineering Toolbox, 2015): 
 

 7.42 . 10
 (8)

 

where dp  = Pressure drop (bar); 
 q  = Air volume flow at atmospheric conditions (m3/min); 
 L  = Length of pipe (m);  
 d  = Inside diameter of pipe (mm);  
 p  = Initial absolute pressure (kg/cm2) 
 
The air volume flow from the given parameter is converted to m3/min. The length of the pipe is equal to 
the depth where the air line is set. The inside diameter of the pipe is as per the design. The initial absolute 
pressure is equal to the absolute pressure at the submergence depth, converted to kg/cm2. 
 
 
6.2 Air compression 
 
6.2.1 Spreadsheet model (for planning) 
 
A spreadsheet model was made as a part of this report to calculate how much total air volume is required, 
and what capacity of compressor is required in order to stimulate a high-temperature well to flow. The 
input parameters are: the production casing diameter size, static water level in the well, production 
casing shoe depth, the initial wellhead pressure, the target or final wellhead pressure during the air 
compression, the initial and final temperature in the airspace, and the compression or pumping time. 
After inputting the parameters, the model will calculate the initial and final casing air volume, the initial 
and final number of moles, the amount of moles that need to be injected into the wellbore, and finally, 
the corresponding air flow to be injected in litres per second (L/s) and in standard cubic feet per minute 
(scfm). The user can play around with the model by changing the necessary parameters. For example, if 
the user only has a low flow capacity compressor, he or she can change the length of pumping time in 
order to reach the target wellhead pressure. 
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The initial casing volume with air is calculated using the formula: 
 

  (9)
 

where  Vi  = Initial casing volume with air (m3); 
 r  = Casing radius (m);  
 hi  = Water level (m). 
 
The final casing volume with air is calculated using the formula: 
 

  (10)
 

where  Vf  = Final casing volume with air (m3);  
 hf  = Casing shoe depth or maximum water level suppression for target pressure (m). 
 
The initial number of moles is calculated using the ideal gas law. By isolating the moles on the other 
side of the equation, the formula becomes: 
 

 
 (11)

 

where  n  = Number of moles; 
 Pi  = Initial wellhead pressure (bar-a); 
 Vi  = Initial casing volume with air (m3);  
 R  = Universal gas constant (0.08314 L bar/K mol);  
 Ti  = Initial temperature (K). 
 
The final number of moles is calculated using the formula: 
 

 
 (12)

 

where Pf  = Final wellhead pressure (bar-a); 
 Vf  = Final casing volume with air (m3);  
 Tf  = Final temperature (K). 
 
The difference between the final and initial number of moles is equal to the total air that needs to be 
injected by the compressor. One mole of an ideal gas will occupy 22.4 L at standard temperature and 
pressure (STP) so the number of moles can be converted to litres per second (L/s) by multiplying it by 
22.4. The volume in L/s is also converted to standard cubic feet per minute (scfm) for ease in finding 
compressor capacity suitable for actual operation. 
 
This model can also be used in reverse. The volume flow capacity and the time it takes to compress a 
well from initial to final state can be interchanged so the volume capacity will be the input parameter 
and the time will be the output. The same concept and formulas will be used. After inputting the air 
volume capacity of a sample compressor in standard cubic feet per minute (scfm), it is converted to L/s 
and then eventually to number of moles per second by dividing it by a factor of 22.4. Finally, the time 
is calculated by getting the difference between the final and initial number of moles, and dividing this 
number by the number of moles per second. The time is calculated in seconds, then converted to hours. 
This can help in planning out an air compression job. The user can now have an estimate of how long 
the compression job will take just by knowing the condition of the well, the target wellhead pressure, 
and the compressor capacity. 
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6.2.2 Spreadsheet model (for predicting success) 
 
A spreadsheet model was made for this report to simulate if the well will successfully discharge by 
attaining a certain pressure at the wellhead after releasing the air. The input parameters are the depth, 
static temperature and pressure profiles and target wellhead pressure. After inputting the parameters for 
a static well, the model will predict (or calculate) after the air release.  The calculation of flowing 
pressure and temperature profile, steam quality, and density per depth is based on shifting the deep water 
up into the shallow portions of the well. The shift corresponds to the pressure of compression, by how 
much the water moves up. The model will then, based on the reassigned enthalpies vs. depth, calculate 
new values of pressure, temperature, steam quality, and density up to the surface. The pressure vs. depth 
is calculated by using Equation 3. The spreadsheet results will tell us if the well will successfully 
discharge by building up a certain wellhead pressure during the initial discharge just modelled. A 
criterion for successful discharge should be a minimum of 2 bar-a, at the wellhead. 
 
 
6.3 Two-phase simulator 
 
After stimulating the well to flow either by air-lift pumping or air compression successfully, the well 
will continue to discharge and self-flow. A spreadsheet model was created to determine if the well has 
sufficient pressure and enthalpy to flow successfully. The simulator program HOLA was also used to 
compare the results with the model, as well as actual temperature and pressure logs from flowing wells 
(dynamic). 
 
6.3.1 Spreadsheet model 
 
A spreadsheet model was made as a part of this report to simulate temperature and pressure profiles to 
assess whether the well will flow or not, depending on the inflow parameters of the well (in this case 
assumed to be for the bottom conditions). The model then calculates flowing profiles from bottom to 
top. The input parameters should be for the main inflow but in this exercise: the bottom depth, the 
pressure at the bottom, the average enthalpy of the well discharge, and assumed pressure loss due to 
two-phase friction. After inputting the parameters, the spreadsheet model will give the pressure vs. depth 
up to the surface, the temperature vs. depth, the quality of steam, and density vs. depth based on the 
pressure and enthalpy. The pressure vs. depth is calculated by using Equation 3. A pressure drop with 
units of bar per kilometre factoring in friction losses is also incorporated in the model, and this value 
will be subtracted from the calculated pressure vs. depth. The results are displayed on a graph with the 
simulated pressure vs. depth inside the wellbore superimposed with the measured downhole data. It will 
also show if the well has a positive wellhead pressure and flow to the surface. The minimum pressure 
criterion to obtain sustainable flow at the surface ranges from 2 to 4 bar-a. 
 
6.3.2 HOLA 
 
HOLA is a software program, a wellbore simulator, which simulates a well temperature and pressure 
profile from the top to the bottom of the well. The input parameters are wellhead conditions (wellhead 
pressure, flow and enthalpy), casing geometry, and location of feedzones. After inputting the parameters, 
the program will give the downhole profile down to the bottom. 
 
The user is first asked to enter the input parameters and they are: 
 

 Textlines. 
 Wellhead parameters - wellhead pressure (bar-a), wellhead enthalpy (kJ/kg), and wellhead flow 

(kg/s). 
 Heat loss parameters (usually entered with default/assumed values) - rock thermal conductivity 

(2 W/m/°C), rock density (2800 kg/m3), rock heat capacity (1000 J/kg/°C), and time passed 
(0.8640 105 s). 
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 Wellbore geometry - depth of well (m), number of well sections, length of each sections (m), well 
inner radius (m), well roughness (default/assumed value of 0.05 mm), and distance between nodal 
 points (m). 

 Feedzone properties (flow and enthalpy). 
 
The user then has the option to select phase velocity method: Armand, Orkiszewski, Chisholm, or 
Björnsson (9-5/8" wells) but the default method is Orkiszewski (1967). Finally, the user can choose to 
calculate the wellbore conditions (temperature and pressure), write the results to a file, and then plot the 
results. 
 
 
 
7. EXAMPLES 
 
7.1 Air-lift pumping 
 
As an example, a hypothetical well was made and its properties were entered into the air-lift spreadsheet 
model. The conditions are like for a cold well as the initial conditions for air-lift pumping. Only after 
first successfully unloading the cold water will the effects of flash-steam kick in as the well heats up.  
The effects of flashing are not a part of this model, only the air-lift pumping part to initiate the flow. 
The following are the input parameters: 
 

 Air volume flow: 500 scfm. 
 Air line setting depth: 400m. 
 Pressure at the air line setting depth: 20 bar-a. 
 Temperature at the air line setting depth: 20°C. 
 Expected water flow out the wellbore: 25 L/s. 
 Air pipe inside diameter: 50 mm. 

 
Figure 10 shows the snapshot of the spreadsheet model while Figure 11 shows the results. 
 

FIGURE 10: Snapshot of the air-lift pumping spreadsheet model  
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7.2 Air compression (for planning) 
 
Energy Development Corporation (EDC) uses an air package for air compression operations. An air 
package is a combination of an air compressor and an air booster. This equipment is important in 
reviving some of the production wells for augmenting the supply of steam. See Table 2 below for the 
compressor specifications.  
 

TABLE 2: Air package specification 
 

Equipment Compressor Booster 
Discharge pressure 24.13 bar (350 psi) 149.96 bar (2175 psi) 
Capacity 1350 scfm 1800 scfm @ two stage 
Fuel consumption 200 litres/4 hours 250 litres/4 hours 

 
As an example, actual field data from a well in the Philippines is used in the air compression spreadsheet 
model. Here are the input parameters for well 1: 
 

 Casing size: 9-5/8” 
 Initial water level: 1000m 
 Final water level: 1700m 
 Initial pressure: 1 bar-a 
 Final pressure: 58 bar-a 
 Pumping time: 2 h 
 Initial temperature: 158°C 
 Final temperature: 240°C 

 
Model output – Air capacity: 707 scfm 
 
This tells us that the primary air compressor alone will not be able to carry out the job, even though the 
volume capacity is sufficient. The maximum pressure requirements of 58 bar-a cannot be met without 

FIGURE 11: The spreadsheet model graph tells us that with the given air-lift pumping design 
parameters, the well will flow at the surface at 2.1 bar-a wellhead pressure, and the pressure at the 

air line will drop from 20.64 bar-a at the surface to 20 bar-a at the end of the air line at 400 m depth 
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adding a booster. A combination of the 
compressor and booster is more than 
sufficient, and that is the set-up that is 
usually used in the Philippines. 
 
In order to achieve a wellhead pressure 
of 58 bar-a in two hours, an air flow of 
707 scfm is required. If we take the 
reverse and enter an air capacity of 350 
scfm as input, the time will be 4.1 hours. 
This means that to reach the target 
pressure while using a small capacity 
compressor, it will take about twice as 
long to finish the job and build up the 
target wellhead pressure. Figure 12 
shows the snapshot of the air 
compression spreadsheet model. 
 
 
7.3 Air compression (for predicting  
      success) 
 
Well 1 described above was also used as an example for this model. The input parameters are the 
following: Bottom depth of 2100m, static temperature and pressure profiles, and target wellhead 
pressure of 58 bar-a, which is the pressure at the production casing shoe. 
 
The pressure at the bottom, which is 80 bar-a, will be subtracted from the pressure to be injected, which 
is 58 bar-a. The difference is equal to 22 bar, which is at a depth of 1400 m, based on the flowing 
pressure per depth. The user will then use the second table to enter the second set of parameters which 
are the depth of 1400 m, the static pressure at this depth which is 33.3 bar-a and shift the enthalpy from 
the bottom of the well to this depth which is 991 kJ/kg. The other enthalpy figures are likewise shifted 
upwards as to simulate the effects of the air being released and the heated water moving up the well. 
Projecting these parameters to the surface tells us that this well will not discharge because the value at 
the surface is less than 2 bar-a. Figure 13 shows the snapshot of this spreadsheet model while Figure 14 
shows the downhole profiles before compressing and after releasing the compressed air. This agrees 
with the field results, the well could not self-flow. 
 
As a second example for testing this model, well 2 was used. The initial wellhead pressure is at 1 bar-a, 
and the water level is at 600 m. The target wellhead pressure is 66 bar-a, because this is the pressure at 
the production casing shoe, which is located around 1500 m. The input parameters are the following: 
bottom depth of 2400m, static temperature and pressure profile, and target wellhead pressure by air 
compression of 66 bar-a. 
 
The pressure of the bottom, which is 135 bar-a, will be subtracted from the pressure to be injected, which 
is 66 bar-a. The difference is equal to 69 bar, which is at depth 1300 m based on the flowing pressure 
per depth. The user will then use the second table to enter the second set of parameters which are the 
depth of 1300 m, the static pressure at this depth which is 60 bar-a and the shifted enthalpy from the 
bottom of the well to this depth which is 1341 kJ/kg. All other enthalpy vs. depth figures are likewise 
shifted upwards.  Projecting these parameters to the surface tells us that this well will discharge, since 
the pressure at the wellhead (surface) will be 33 bar-a. Figure 15 shows the downhole profiles before 
compressing and after releasing the compressed air. 

FIGURE 12: Snapshot of the air compression spreadsheet 
model (for planning) 



Gotuato 236 Report 13 

 

FIGURE 13: Snapshot of the air compression spreadsheet model (for predicting success) 

FIGURE 14: Downhole profiles of well 1 before air compression and after releasing compressed air

FIGURE 15: Downhole profiles of well 2 before air compression and after releasing compressed air 



Report 13 237 Gotuato 

7.4 Flowing wells 
 
Down-hole measurements from flowing wells (dynamic logs) are used as actual examples to validate 
predictions by the spreadsheet model and the HOLA program.  
 
Input parameters are used from a number of wells in the two-phase spreadsheet model. The assumed 
two-phase pressure drop (assumed) in the well was varied from values 4 to 7 (bar/km). After a number 
of runs and testing a number of wells, a value within the range 4-7 produced good predictions. 
 
The input parameters for well 3 in the 
spreadsheet model are the following: 
 

 Bottom depth: 2700 m 
 Pressure at bottom depth: 69.9 bar-a 
 Pressure drop: 5.35 bar/km 
 Enthalpy: 1228 kJ/kg 

 
Figure 16 shows the snapshot of the two-
phase simulator model.  
 
The input parameters for well 3 in the 
HOLA program are the following: 
 

 Wellhead pressure: 12.2 bar-a 
 Wellhead enthalpy: 1228 kJ/kg 
 Wellhead flow: 29 kg/s 
 Rock thermal conductivity:  

   2 W/m/°C 
 Rock density: 2800 kg/m3 
 Rock heat capacity: 1000 J/kg/°C 
 Time passed: 0.8640 E^5 s 
 Depth of well: 2500 m (vertical 

    depth) 
 Number of well sections: 2 (produc- 

   tion casing and slotted liner) 
 Length of section 1 (production 

    casing): 1600 m (vertical depth) 
 Well inner radius: 0.120 m 
 Well roughness: 0.05 mm 
 Distance between nodal points: 2 m 
 Length of section 2 (slotted liner): 

    900 m (vertical depth) 
 Well inner radius: 0.089 m 
 Well roughness: 0.05 mm 
 Distance between nodal points: 2 m 
 Number of feed-zones: 1 

 
It is important to note that the feedzone is assumed to be one and the depths entered should be the vertical 
depths and not the measured depths of a deviated well. If there are discrepancies or errors with the 
values, it could be attributed to these factors. Figure 17 shows the measured data and the simulated data 
from the spreadsheet model and HOLA program. The model results agree well on the wellhead pressure 
(WHP) but show a slightly lower pressure deep in the hole as compared to HOLA and the measured 
values. The figure includes a sample well profile from another well (blue X) that will not self-flow by 
inputting a low value for enthalpy (temperature profile of the well) in the model.  

FIGURE 16: Snapshot of the two-phase simulator 
spreadsheet model 
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8. CONCLUSIONS 
 
To conclude, let us go back to the main objective which was to answer the question: "What are the 
technical requirements for a successful discharge by air-lifting and compressing the well?" 
 
For the air-lift pumping, what submergence of the coiled tubing or drill pipe and air-compressor rating 
(pressure and air flow) are required?  
 

 Based on air-lift graphs, 50% of pumping submergence is required for efficient air-lift with wells 
about 60-150 m of total pumping lift. This percentage decreases as the pumping lift increases, 
such as 40% for 150-270 m. The minimum wellhead (or compressor) pressure requirement to 
initiate flow in the air line is calculated by getting the difference of the air line setting depth and 
static water level, then multiplying by the water density and g (9.8). For the air volume 
requirement, the total pumping lift, pumping submergence and the size of air pipe or line and 
casing are the factors needed to be considered. Practical guidelines from air lift pumping of water 
wells were applied. 

 Based on the spreadsheet model, the success of an air-lift set up can be assessed based on the air 
volume and expected water flow (air/water ratio) and the submergence depth.  

 
For air compression, what volume capacity of compressor is required for a certain job and how long 
does it take to compress a well from initial to final pressure? What air pressure is needed to discharge 
the well by compression alone? 
 

 Based on the spreadsheet model results, the capacity of the compressor in terms of air volume 
flow rate can be computed by knowing the well conditions and downhole profile of the initial and 
desired state of air compression, well geometry, and duration of compression. The user can play 
around with the model, making the capacity the known variable and duration of pumping the 
unknown. This is good for planning the compression job, estimating capacity and time, even 
before going into the field.  

FIGURE 17: Results of the simulated data using the spreadsheet model and HOLA 
vs. the measured data of well 3 
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 For a compression job, one should maximize the water level depression, whether at the first loss 
zone or at the production casing shoe, considering also the pressure rating of the wellhead and the 
pipes used at the surface. Because the water level is typically compressed down to the production 
casing shoe depth, the optimum wellhead pressure one can achieve by compressed air depends on 
the reservoir pressure at this depth. With this factored in, the next important factor is the 
temperature (enthalpy) of inflow. With sufficient temperature, the well should flow. Based on the 
spreadsheet model for predicting success of compression, the combination of downhole pressure 
and temperature and the casing shoe depth dictates whether a well will flow at the surface or not 
after rapidly releasing the compressed air. 

 
What other key factors are considered necessary for a well to attain successful discharge and maintain 
self-flow? 
 

 Based on the developed two-phase simulator (simulating from bottom to top), attaining successful 
discharge and maintaining self-flow depends on the bottom pressure, well inflow enthalpy, and 
pressure loss due to friction up the hole. This model was compared to the HOLA wellbore 
simulator (simulating from top to bottom) and the results were also comparable with downhole 
logging data. 
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