
Hydro Power Systems:
Scripting Modelica R© Models for Operational Studies in

Education

Telemark University College
Faculty of Technology

Porsgrunn, Norway

Dietmar Winkler∗ Bernt Lie†

Abstract

Telemark University College is offering a mas-
ter degree program called “Systems and Con-
trol Engineering”. Most students of that pro-
gram have a background in either electrical, me-
chanical, control engineering or a combination
of those. Since Norway covers about 99% of
its electrical energy demand using hydro-electric
power plants it is natural to also educate master
students in the subject of hydro power systems.
About three years ago the Telemark University
Colleges started a cooperation with the Norwe-
gian power company “Skagerak Energi” in or-
der to offer real-life projects for students and
to establish a new teaching course for sec-
ond year master students called “Modelling and
Simulation of Hydro Power Systems”. That
course teaches the students the basic principles
of hydro-electric power generation starting the
prediction of precipitation “down” to the distri-
bution of electrical power in the grid with other
loads and consumers connected to it.
This paper presents the teaching approach we
have taken so far and our evaluations of open-
source tools to be used within the “Mod-
elling and Simulation of Hydro Power Systems”
course. The evaluations were also focused on

∗Dietmar.Winkler@hit.no
†Bernt.Lie@hit.no

possibilities of scripting model simulations.

1 Teaching hydro power sys-
tems

1.1 Overview

Teaching hydro power systems gives one the
great opportunity to deliver combined knowl-
edge of at least three major engineering do-
mains:

• Mechanical engineering

• Electrical engineering

• Control engineering

In detail the course deals with:

• Formulation of mathematical models
across different physical domains (e.g.,
mechanical, electrical, hydrological).

• Introduction to the object-oriented mod-
elling language Modelica.

• Development of a simple hydro power plant
model which can be extended to more com-
plex and accurate models.

• The benefit of using object orientation
when implementing such models, with spe-
cial emphasis on how the model can be
gradually extended.

We use the modelling language Modelica1

which was especially designed for models which
contain components from different physical do-
mains. The benefit of using Modelica in teach-
ing are for example:

openness Students can look at the exact equa-
tion based mathematical description of
physical systems

multi-domain nature In Modelica it is possi-
ble to connect the different domains (e.g.,
electrical, mechanical, control) within one
model in order to get close representation
of the real physical system.

object-orientation Enhancing models in a
“top-down” manner is very simple. This
means students can start working on sim-
ple models and increase the level of detail
later on.

1.2 Using modelling and simulation
in projects

After having learnt about the mathematical and
physical theory of hydro power systems, stu-
dents can now apply that knowledge in work-
ing on operational studies. Those studies consist
normally of real-life problems which need to be
solved. In the past our students have for exam-
ple worked on “Modelling and Optimisation of
Deviation in Hydro Power Production”[1] and
“Stability Analysis of AGC in the Norwegian
Energy System”[2]. In the latter example it was
especially important to use scripting and optimi-
sation tools.

1Modelica R©is a registered trademark of the Modelica
Association https://modelica.org

2 Modelling tool chain used
so far

2.1 The modelling language Model-
ica

Modelica R© is a unified object-oriented language
for systems modelling. It is developed by the
Modelica Association2 which was founded in
1996 and consists of members from industry,
university and rersearch organisations.
The Modelica Association also develops the
free and open-source Modelica Standard Li-
brary(MSL)3 which is currently at version 3.2
and consist of 1280 non-trival models and 910
functions. The MSL makes it possible to gener-
ate models of complex systems in a simple and
quick manner.
Since Modelica is especially suitable for multi-
domain modelling and also because of the trans-
parency of its models we decided to base our
“Modelling and Simulation of Hydro Power
Systems” course on this powerful modelling lan-
guage.

2.2 The modelling tools

In the course so far, we were using the com-
mercial modelling tool Dymola4. There are sev-
eral reasons for this. One is that our students
are mainly engineering students with little pro-
gramming background. Since our hydro power
systems course should mainly concentrate on the
modelling and simulation tasks and not so much
on the programming side we needed something
that the students are comfortable working with
and can learn within a reasonable short period
of time. Basically this means that we needed a
Modelica tool that allows to edit models graphi-
cally in a drag-and-drop manner rather than do-
ing textual programming.
Another reason was that for the course we also
liked to demonstrate the real power of Model-
ica with detailed models of a complete hydro

2http://www.modelica.org
3https://modelica.org/libraries/Modelica
4http://www.dymola.com

power system. For this task we came across
the HydroPowerLibrary5 which includes such
complex models and easy to use examples.

2.3 Example from the
HydroPowerLibrary

A typical example that the students model in the
end of the course is a complete hydro power sys-
tem as depicted in Fig. 1 consisting of:

• Reservoir

• Waterway

• Turbine with turbine regulator

• Generator

• Power grid

With such a model one can investigate the pro-
cess of synchronising a generator that is driven
by water turbine to the grid and then look at the
power balance.
There are a lot of interesting aspects that the stu-
dents can look into. E.g.,

• How aggressive should the turbine con-
troller be?

• when can the electrical connection between
the electrical generator and the electrical
grid be made?

• what happens when it comes sudenly to a
load change on the electrical grid?

And those are just some of the many scenarios
that one can simulate with this model. One thing
all of the different simulation scenarios have in
common though is that one would like to auto-
mate the simulations with variations of some pa-
rameters, i.e., doing parameter sweeps.

5The HydroPowerLibrary is developed by Modelon,
see http://www.modelon.com

2.4 Drawbacks of the commercial
tools

Especially the automation of several simulations
is something where Dymola was kind of weak or
cumbersom to use. Also at this point the engi-
neering students begin to see why it might be
necessary and more convenient to be able to use
a scripting language.
One of the most powerful scripting languages is
Python6. Unfortunately, the tool Dymola pro-
vides neither a convenient to use own scripting
language nor does it provide a direct interface
for Python. That is why we started to look at
alternatives.
Another drawback, we as an academic institu-
tion see, is that students should be learning to
use tools that they will also be able to use af-
ter they finished their degree at our university
college. This might be a kind of moral aspect
but a valid one none-the-less since many of our
students come from countries where they basi-
cally can not afford to buy a licence (even when
working at a company). It is also important for
the students to be able to reproduce the results of
their project and study work without restrictions
after they have left higher education.

3 Going Open-Source in
Modelling and Simulation

Using Modelica R© as an open modelling lan-
guage is only the first step. We now looked into
open-source tools that allows us to create the
models in a convenient way, execute the simu-
lation and do post-processing and optimisation.
The most advanced open-source Modelica
modelling and simulation tools are currently
OpenModelica7 and JModelica.org8.
First we looked at OpenModelica which already
provides a graphical editor called “OMEdit”.
Unfortunately that editor did not appear to be
all that stable at the time of writing so we con-
centrated more on the script interface. Here

6http://www.python.org
7http://openmodelica.org
8http://jmodelica.org

Figure 1: Screenshot from a HydroPowerLibrary example modelled in Dymola

OpenModelica provides the possibility to use
MetaModelica, a special language that was de-
veloped not just for scripting but also program-
ming the compiler itself[3]. As of version 1.8.1,
OpenModelica also provides a beta version of
Python Scripting.

JModelica.org is heavily reliant on Python and
the whole simulation routine is controlled by us-
ing Python. Also does JModelica.org use the
FMI standard [4] that offers the possibility to use
exported models from other simulation tools.
Thus we decided to start testing JModelica.org
at first and wait with OpenModelica until the
Python interface has become more mature.

Though not yet feature complete when it comes

to the Modelica Language Specification[5] both
tools are already powerful enough to simulate
hydro power systems. However the remaining
part of the paper shall present the experiences
we made with JModelica.org.

3.1 Simplifying the models

The first thing we tried was exporting a
HydroPowerLibrary model as a FMU and then
later importing this into JModelica.org. Un-
fortunately this was not possible and we con-
cluded this was possibly caused by either a non-
standard export on the one side or a not fully
implemented import functionality on the other

side.
However we continued with loading a simple
HydroPowerLibrary model directly. Again
this failed because of lacking support of cer-
tain functions used in the HydroPowerLibrary
model. In the end we decided to build a very
simplified model that represents the functional-
ity of a hydro power system consisting of a tur-
bine and generator equivalent that is controlled
by a turbine controller and is that then synchro-
nised with the grid.
The SimpleSystem is depicted in Fig. 2.
The idea for this model is that one can look at
the turbine and generator unit as torque source
hpTorque that is used to accelerate their inertia
hpInertia. The before an electrical generator
can be connected with the electrical grid it needs
to be synchronised. The process of synchronisa-
tion consists for several prerequisites:

• Same direction of rotation

• Same voltage level

• Same frequency

Now the simple model can only be used to sim-
ulate the frequency difference and the direction
of rotation, i.e., the run-up of the generator. But
this is actually sufficient for quite a lot of case
studies.
When we only look at the active power balance
then we can think of the electrical grid as a large
inertia gridInteria. If the generated power
and the load power are in balance then the grid
inertia rotating at a constant frequency of 50Hz.
Any electrical load can be represented via the
loadTorque that can be calculated by:

Tel =
Pel

ω∗

where Tel stands for the electrial torque, Pel for
the electrical power and ω∗ for the specific ro-
tational velocity9 The last central component in
the SimpleSystem is the synchronisation switch
which is represented by a mechanical clutch

9Ddepending on the number of poles in an electrical
generator the angular velocity can vary and needs to be
taken into account when calculating the rotatonal energy.

SyncSwitch which closes when the frequencies
of the generator and the grid are near enough. In
this case we are starting to close the “switch”
when the frequencies are within 1Hz of each
other.

3.2 Simulation with JModelica.org
The simplified system from Fig. 2 could almost
be loaded into JModelica.org. The only thing
that we needed to fix was that JModelica.org did
not cope with some of the more advanced initial-
isation options used in the clutch model but not
actually needed in our case.
Error messages that we needed to fix were:

The binding expression of the
variable initType does not match
the declared type of the variable

and

String variables are not supported

The simple solution was to simply remove those
parts from the models used from the Modelica
Standard Library. This is best achieved by doing
as so called “save total” of the model and then
manipulating the used models there.
The following script will then generate a suc-
cessful simulation of the SimpleSystem in
JModelica.org:

Import the function for compilation
of models and the FMUModel class
from pymodelica import compile_fmu
from pyfmi import FMUModel
Import the plotting library
import matplotlib.pyplot as plt

Define model file name and class name
mofile = ’SimpleSystemTotal.mo’
model_name = ’SimpleSystem’

Compile model
fmu_name = compile_fmu(model_name,mofile)

Load model
grid = FMUModel(fmu_name)

Figure 2: Screenshot of a simple system

Simulate the model
res = grid.simulate(final_time=600)
f_gen = res[’wToHz.y’]
f_grid = res[’gridInertia.w’]
t = res[’time’]

Generating the Plot
plt.figure(1)
plt.title(’Synchronising a generator’)
plt.ylabel(’Frequency [Hz]’)
plt.xlabel(’Time [s]’)
plt.plot(t, f_gen, t, f_grid)
plt.grid()
plt.show()

and the resulting plot can be seen in Fig.3

3.3 Scripting and Optimisation
Now that we can run a simulation an exten-
sion for doing a parameter sweep can be eas-
ily achieved. It follows a variant of the previ-
ous simulation script only this time we run sev-
eral simulations after each other in order to see
the effect of having different hydro plant powers
available (in the range of 40MW . . .140MW):

Import the function for compilation
of models and the FMUModel class
from pymodelica import compile_fmu
from pyfmi import FMUModel

Import the plotting library
import matplotlib.pyplot as plt
Import numpy
import numpy as np

Define model file name and class name
mofile = ’SimpleSystemTotal.mo’
model_name = ’SimpleSystem’

Compile model
fmu_name = compile_fmu(model_name,mofile)

Load model
grid = FMUModel(fmu_name)

Define initial conditions
p_var = 10
p_min = 40e6
p_max = 140e6

turbine_gain = np.linspace(p_min,p_max,p_var)/
(2*np.math.pi*50)

Setup of plot
plt.figure(1)
plt.hold(True)
plt.title(’Synchronising a generator’)
plt.ylabel(’Frequency [Hz]’)
plt.xlabel(’Time [s]’)

Running the different simulations

0 100 200 300 400 500 600
Time [s]

0

10

20

30

40

50

60

Fr
e
q
u
e
n
cy

 [
H

z]

Synchronising a generator

f_grid

f_gen

Figure 3: Simulation result from JModelica.org

for i in range(p_var):
Set initial conditions in model
grid.set(’turbineGain’,turbine_gain[i])
Simulate
res = grid.simulate(final_time=600)
Get Simulation result
f_gen = res[’wToHz.y’]
f_grid = res[’gridInertia.w’]/

(2*np.math.pi)
t = res[’time’]
plt.plot(t, f_gen, t, f_grid)

plt.grid()
plt.show()

Using thise code we will get a plot like shown
in Fig. 4 where the different rising graphs repre-
sent the frequencies of the accelerated turbine-
generator unit. For example can one see that
the starting power of Pgen = 40W is in this case
not enough to bring back the grid frequency to
50Hz.

4 Conclusion
Our study has shown that is possible to sim-
ulate Hydro Power Systems with open-source
tools that also allow for convenient scripting.
However the there is still room for improve-
ment both, on the compiler side in order to sup-
port more Modelica models, especially from the

Modelica Standard Library. The other thing that
is actually still lacking (but in development) in
JModelica.org is a graphical editor. Without
such a tool it will be hard to convince engineer-
ing students of the benefits and possibilities of
Modelica and its rich modelling potentials.
The scripting itself is thanks to Python very easy
and quick to learn and the produced plots are
thanks to Matplotlib also more advanced as
what Dymola would be able to produce.
To be honest, the open-source tools are not quite
mature enough to allow us to completely switch
our courses away from the commercial solutions
we are currently using. But at least for student
projects (i.e., where students can invest more
time and energy) those offer a very interesting
alternative and we are definitely continuing the
evaluation as the tools keep improving all the
time.

References

[1] D. Winkler, H. M. Thoresen, I. Andreassen,
M. A. S. Perera, and B. R. Sharefi, “Mod-
elling and Optimisation of Deviation in
Hydro Power Production,” in Proceedings
of the 8th International Modelica Confer-
ence, vol. 1, (Dresden, Germany), Mod-
elica Association, Modelica Association

100 200 300 400 500 600
Time [s]

48.5

49.0

49.5

50.0

50.5

Fr
e
q
u
e
n
cy

 [
H

z]

Synchronising a generator

Figure 4: Simulation result of a simulation sweep with varying Pgen = [40 . . .140]MW

and Technische Universität Dresden, 20th
- 22rd March 2011. ISBN: 978-91-
7393-096-3 Linköping Electronic Confer-
ence Proceedings ISSN (print):1650-3686
ISSN (online):1650-3740.

[2] I. Andreassen and D. Winkler, “Stabil-
ity Analysis of AGC in the Norwegian
Energy System,” in Proceedings of ’The
52nd Scandinavian Conference on Simula-
tion and Modeling (SIMS 2011)’ (S. o. S. D.
o. S. Dahlquist, Erik (Ml̈ardalen University
and T. (MERO), eds.), (Västerås, Sweden),
pp. 133–143, Scandinavian Simulation So-
ciety, Mälardalen University, 29th - 30th
September 2011. ISBN: 978-91-977493-7-
4.

[3] A. Pop and P. Fritzson, “Metamodelica:
A unified equation-based semantical and
mathematical modeling language,” in Mod-
ular Programming Languages (D. Lightfoot
and C. Szyperski, eds.), vol. 4228 of Lec-
ture Notes in Computer Science, pp. 211–
229, Springer Berlin / Heidelberg, 2006.
10.1007/11860990_14.

[4] M. . A. M. . B. C. . C. C. . E. H. . J. A. . M.
J. . M. M. . N. T. . N. D. . O. H. . P. J.-V. .
W. S. Blochwitz, T. ; Otter, “The functional
mockup interface for tool independent ex-
change of simulation models,” in Proceed-

ings of the 8th International Modelica Con-
ference, March 20th-22nd, Technical Uni-
veristy, Dresden, Germany, Linköping Elec-
tronic Conference Proceedings, pp. 105–
114, Linköping University Electronic Press,
Linköpings universitet, March 2011.

[5] Modelica Association, Modelica R©– A Uni-
fied Object-Oriented Language for Physi-
cal Systems Modeling – Language Specifi-
cation, version 3.3 ed., 5th September 2012.

