
Towards A Parallel Distributed Equation-Based
Simulation Environment

Robert Braun1 and Petter Krus1

Linköping University, Division of Fluid and Mechatronic Systems, SE-58183
Linkping, Sweden

Abstract. Distributed solvers provide several benefits, such as linear
scalability and good numerical robustness. By separating components
with transmission line elements, simulations can be run in parallel on
multi-core processors. At the same time, equation-based modelling of-
fers an intuitive way of writing models. This paper presents an algo-
rithm for generating distributed models from Modelica code using bilin-
ear transform. This also enables hard limitations on variables and their
derivatives. The generated Jacobian is linearised and solved using LU-
decomposition. The algorithm is implemented in the Hopsan simulation
tool. Equations are transformed and differentiated by using the SymPy
package for symbolic mathematics. An example model is created and
verified against a reference model. Simulation results are similar, but the
equation-based model is four to five times slower. Further optimisation of
the algorithm is thus required. The future aim is to develop a distributed
simulation environment with integrated support for equation-based mod-
elling.

Keywords: model generation, equation-based modelling, distributed solvers,
symbolic expressions, numerical solvers

1 Introduction

As products are becoming more complex, the importance of large-scale and
multi-disciplinary system simulation is constantly increasing. The use of new
powerful product development methods, such as numerical optimization, real-
time simulations and hardware-in-the-loop has greatly increased the need for
high-performance simulations.

State-of-the-art environments in modern system simulations use equation-
based object-oriented (EOO) modelling together with centralized solver algo-
rithms. The equation-based approach offers a very intuitive way for users to
write models. Centralized solvers, however, suffer from poor scalability, which
means that execution time grows more than linearly with the model size, and are
naturally difficult to parallelise for multi-core processors. There are also difficul-
ties in splitting up models for co-simulation or hardware-in-the-loop simulations.
Furthermore, fault tracing in an erroneous model is often difficult.

This paper proposes the use of distributed solvers in combination with equa-
tion based modelling. Having one small Jacobian matrix for each sub-component



offers nearly-linear scalability. Figure 1 shows an overview of the basic idea. With
the use of transmission line element modelling, components can be numerically
isolated from one another. This guarantees numerical stability and makes mod-
els inherently parallel, and thereby suitable for taking advantage of multi-core
processors [1]. Distributed solver simulations can also be seen as a sort of natural
co-simulation, making them very suitable for interaction between different sim-
ulation tools. A possible drawback with the transmission line element method
is that wave propagation phenomena are affected by the size of the time step.
If wave propagation is of importance, fixed-size time steps are therefore to be
preferred. Experiments using variable time steps with distributed solvers was
performed by [2], but the gains was found to be very small. On the other hand,
the use of distributed solvers makes it possible to use smaller time steps in cer-
tain parts of the model, where a higher resolution is required. Time steps can
thus be varied in model space rather than in time space.

model Component1

NodeHydraulic P1;

NodeHydraulic P2;

equations:

...

model Component2

NodeHydraulic P1;

NodeHydraulic P2;

equations:

...

model Component3

NodeHydraulic P1;

NodeHydraulic P2;

equations:

...

model Component4

NodeHydraulic P1;

NodeHydraulic P2;

equations:

...

Solver Solver

Solver Solver

P1

NodeHydraulic

P2

P2

NodeHydraulic

P1

P2

NodeHydraulic

P1

P1

NodeHydraulic

P2

Fig. 1. This paper proposes the use of equation-based modelling in a distributed solver
environment. Distributed solvers can provide linear scalability, good numerical prop-
erties and natural parallelism.

Distributed simulation environments exist, but they lack built-in support for
equation-based modelling. The Hopsan simulation package described in this pa-
per uses pre-compiled libraries written in plain C++ code. Previous attempts
to introduce equation-based modelling manually using Mathematica have been
successful [3]. This has in turn been used to generate models from Modelica by
transforming them to Mathematica syntax [4]. It does, however, require the use
of external proprietary tools which cannot be embedded in the simulation tool.
Experiments have also been made by going the other way around and intro-



ducing transmission line element models in existing Modelica tools [5][6]. The
advantage of implementing equation-based modelling in an existing distributed
environment is that already existing features, such as connectors, delays, utility
functions and parallel algorithms, can be used directly.

An alternative solution could be to import equation-based models from the
Functional Mock-up Interface (FMI), an open standard for interfacing between
simulation environments. This is currently being implemented in the Hopsan
simulation tool [7]. It is, however, a more cumbersome and likely slower solution,
more suitable for importing large models already created in another simulation
tool.

2 Transmission Line Element Method

Distributed solvers provide great advantages for performance and numerical
properties [8]. Splitting up a model does, however, introduce time delays between
sub-models, which affects the mathematical correctness. It is therefore desirable
to use a modelling approach where these delays can be physically motivated.
This is possible because of the fact that information propagation never happens
infinitely fast in a physical system. One such approach is the transmission line el-
ement method (TLM). Most physical system models can be rearranged to consist
of resistive and capacitive subcomponents. With TLM modelling, each capaci-
tive component in the model is replaced by a transmission line element with a
characteristic impedance. The method is related to the method of characteristics
[9] and to transmission line modelling as described in [10].

In fluid power systems the capacitive components are represented by pipes
(or volumes). These would equal springs in mechanical systems or capacitors in
electrical systems. Consider a pipe with time delay ∆T , see figure 2. Each side
has two state variables, pressure (p) and flow (q).

Zc

p1, q1 p2, q2

Fig. 2. Transmission line elements are used to numerically isolate different parts of a
model from each other. Each part can then be solved independently from the rest of
the model.

At a given time t the pressure at one end of the pipe is a function of the
characteristic impedance Zc, the flow at this end at time t, and the flow and
pressure at the other end at time t − ∆T , see equations 1 and 2. This can be
derived from the four-pole equation [11].

p1(t) = Zc[q1(t) + q2(t−∆T )] + p2(t−∆T ) (1)



p2(t) = Zc[q2(t) + q1(t−∆T )] + p1(t−∆T ) (2)

For simplicity, these equations can be decoupled by introducing a wave vari-
able (c), representing the information travelling from one end to the other at
time ∆T :

c1(t) = Zcq2(t−∆T ) + p2(t−∆T ) (3)

c2(t) = Zcq1(t−∆T ) + p1(t−∆T ) (4)

This yields the decoupled transmission line equations. These are used as
boundary equations in the resistive components:

p1(t) = Zcq1(t) + c1(t) (5)

p2(t) = Zcq2(t) + c2(t) (6)

In a hydraulic system model, this is implemented by letting the capacitive
components calculate c and Zc from pressure and flow. The resistive components
then read c and Zc, apply the boundary equations to calculate pressures, and
then in turn use the pressures to calculate flows.

3 Model Generation Algorithm

To solve an equation system, it is necessary to generate a symbolic Jacobian
matrix, together with vectors of state variables and system equations. The first
step is to parse a Modelica file, containing a model object with connectors, al-
gorithms, equations, variables and parameters. Connectors are hard-typed and
the actual connection must be handled by the target simulation environment.
Variable limitations specified by the user must also be taken into account. There
are two important criteria for the equation system to be solvable. First, the
number of equations must equal the number of variables. Second, the resulting
Jacobian matrix must not be singular. Verifying the first condition is obviously
trivial. Solving the dynamic parts of the system can be done by using the trape-
zoidal rule, see equation 7. A more effective way of using this is to use bilinear
transform, see equation 8. This transforms the equations from continuous to
discrete-time by replacing all Laplace operators with a function of the delay
operator (z), see figure 4.

x(t+ h) = x(t) +
1

2
h(x(t) + x(h+ t)) (7)

Fd(z) = Fa(s)

∣∣∣∣
s= 2

T
z−1
z+1

= Fa

(
2

T

z − 1

z + 1

)
(8)



An important aspect in models of non-linear systems is variable limitations.
Certain variables are for physical reasons not allowed to be smaller than or larger
than specified limits. It is often also necessary to explicitly set the derivatives of
the variable to zero when exceeding the limits. In a fixed-step environment with
distributed solvers it is not practical to rely on event handling for restarting the
solvers when a variable exceeds its limitation. Instead, all limitations must be
inserted directly into the transformed equations. Two special functions are used
to specify limitations, VarLimit() and VarDerLimit(), which limit only the
variable, or the variable together with the derivative, respectively. In the current
implementation, the call to the limitation function must be written directly after
the equation(s) defining the variable (and derivative) to be limited. It would be
desirable that these equations can be identified automatically by the parser, but
for time reasons this has not been included in this paper.

The use of bilinear transform makes it possible to explicitly factor out a given
variable from an equation. This allows limit functions to be inserted around the
remaining part of the equation. First consider equation 9. This equation gives
a relationship between a position x and an external force f . First, the position
variable is factored out symbolically as in equation 10. Finally, a limit() func-
tion is inserted around the remaining part of the equation, effectively limiting
the variable x, see equation 11.

F1(x, f) = 0 (9)

x− F1(f) = 0 (10)

x− limit(F1(f), xmin, xmax) = 0 (11)

The limitation of derivatives are performed in a similar way. Equation 12
defines the velocity v as a function of the position and the force. The velocity
variable is factored out (equation 13), and a function called dxLimit() is inserted
before the remaining part of the equation (14). This function returns one if
the position variable is within limits, otherwise zero. The limitation functions
limit() and dxLimit() are shown in figure 3. The derivative of limit() is
dxLimit(), and the derivative of dxLimit() is zero.

F2(v, x, f) = 0 (12)

v − F2(x, f) = 0 (13)

v − dxLimit(x, xmin, xmax)F2(x, f) = 0 (14)

It is important that the generated equations are simplified as much as possi-
ble. Having longer equations than necessary means that the generated code will
take longer to evaluate each time step, resulting in a slower model. Furthermore,
it is important that equations are simplified in the correct way. It is for example



0

(a) limit()

0

1

(b) dxLimit()

Fig. 3. Two limitation functions can be inserted into the transformed equations, one
that limits a variable, and one that limits the derivative of a variable.

desirable that all delay operators are factored together. Having too many de-
layed variables will otherwise become a bottleneck. Too many power operators,
including square roots, will likely also reduce performance.

The next step is to generate a Jacobian matrix. This is done by analytically
differentiating each equation with respect to each state variable. As a conse-
quence of the fact that users are allowed to write equations in arbitrary order,
it is possible that the Jacobian matrix will become singular. When solving an
equation system in matrix form, however, inverting the Jacobian matrix will be
inevitable. A singular matrix thus makes the system unsolvable and must be
avoided. One way to guarantee this is to ensure that no element on the diagonal
are zero. This can be achieved by ensuring all diagonal elements are constants.
With this method, the matrix will always be invertible regardless of the working
point. This is possible for most physical equation systems. A weaker requirement
is that all diagonal elements must at least be analytically different from zero. In
this case, the Jacobian may become singular, but only for certain values of the
state variables.

Once a non-singular Jacobian has been generated, any fixed-step numerical
solver can be used. In this paper, an iterative Newton-Rhapson solver is used,
see equation 15. In most cases one iteration is sufficient, but more iterations may
be required in models with strong non-linearities.

xk+1 = xk(t)− Jk(t)−1G(xk(t)) (15)

Inverting the Jacobian matrix each time step is a time-consuming solution.
A more efficient method is to use LU-decomposition, a matrix form of Gaussian
elimination [12]. The Jacobian is first decomposed to a product of an upper
matrix, which only has elements above the diagonal, and one lower that only
has elements on or below the diagonal: Jx = b ⇔ LUx = b. Then the system
Ly = b is solved for y, which in turn is used to solve Ux = y for x. This algorithm
can also easily be re-written for parallel execution [13]. In this paper, parallelism
was, however, implemented in model space rather than using parallel algorithms.

The full procedure for generating and simulating equation-based models are
shown in figure 4.



Discretize equations with bilinear transform

Apply variable limitations

Generate symbolic Jacobian matrix

Sort state variables to avoid singularity

Linearize around working point

Fixed-step Newton-Rhapson solver

Generate

Simulate

Fig. 4. Bilinear transform is used to convert equations to discrete form. This makes it
possible to apply variable limitations before generating the symbolic Jacobian. Equa-
tions are solved using distributed fixed-step solvers.

4 Implementation

The algorithm described in this paper was implemented in Hopsan, a cross-
platform distributed simulation environment developed at Linköping University
[14][7]. The application is fully object-oriented and uses pre-compiled component
libraries. No compilation is thus required during runtime. The simulation core
is separated from the graphical interface, making it suitable for both desktop
and embedded applications [15]. It has built-in support for multi-threaded sim-
ulations, which uses the time independences introduced by the transmission line
element method [1].

Converting equations to plain code requires symbolic computations. SymPy
is a free Python library for symbolic computations, providing objects for sym-
bols, functions and expressions. It is capable of all necessary operations such as
replacing symbols, simplifications, factorization and differentiation [16][17]. The
choice fell on SymPy mainly due to the fact that Hopsan has a built-in Python
console, making a Python library ideal for early experimenting.

Due to the use of distributed solvers, only a subset of the Modelica lan-
guage can be used. Most importantly, all connectors are hard-coded to match
the Hopsan node types. An example of a hydraulic node connector is shown in
listing 1.1. This is necessary because all connections are handled by the sim-
ulation core. Custom connectors are, therefore, not allowed. Other Modelica



features that contradict the distributed modelling approach, such as the inner

and outer keywords, are also not allowed. Another reduction is imposed by the
use of fixed-step solvers. This practically eliminates the need for event handling,
which is thus not supported. Sub-classing and functions are also not supported,
although this could easily be implemented in the future. Algorithm sections are
allowed, but only once before and once after the equation section in each model.
Nested algorithm sections are not allowed due to the limitation of only one Ja-
cobian matrix in each component. There are, however, no technical difficulties
in introducing this in the future. The standard Modelica library contains many
built-in intrinsic mathematical functions [18], most of which are supported. A
list of supported functions are shown in table 4.

sin atan2 exp div

cos sinh log rem

tan cosh log10 mod

asin tanh sign floor

acos abs integer ceil

atan sqrt der

Table 1. These Modelica functions are supported by the implementation of the model
generation algorithm.

connector NodeHydraulic "Hydraulic Node"

Real p "Pressure";

Real q "Flow";

Real c "Wave Variable";

Real Zc "Characteristic Impedance";

end NodeHydraulic;

Listing 1.1. Connectors must be hard-typed to match the Hopsan node types. This
code shows a hydraulic node connector in Modelica syntax.

Equations can either be written directly in the graphical interface in Hopsan
or loaded from an external Modelica file. The generator utility function parses
the equation, verifies the syntax and the number of unknowns and replaces any
reserved words with temporary strings.

Lists with all equations, variables, state variables and parameters are created.
These are in turn used to define symbols, functions and expressions in SymPy.
The equations are transformed to discrete form. After this, the variable limits
are applied using the factor() and subs() SymPy functions for factorization
and variable substitution. The Jacobian matrix is created by differentiating the
equations using the diff() SymPy function. The equations are then returned
to Hopsan and translated from Python to C++ syntax. Unit delays in the equa-
tions are replaced by Hopsan delay methods (z−nx = mDelay(x, n)). All integer



variables are also converted to decimal numbers to ensure precision and avoid
phenomena such as ”1/2 = 0”.

The next step is to ensure that the resulting Jacobian matrix is not singular.
This is performed by a bubble-sort algorithm that attempts to arrange system
equations so that they include their corresponding state variable. If this fails, the
generation is aborted because the system is not solvable. The performance of this
sorting could be improved by a more sophisticated algorithm, but this was not
considered necessary as the required time was very small compared to the rest
of the process. If everything was successful, the Jacobian is converted to C++
source code together with a fixed step Newton-Rhapson using LU-decomposition,
which is in turn compiled to a Hopsan component. The symbolic Jacobian is also
displayed in a dialogue to the user.

5 Example: Hydraulic Pressure Relief Valve

As a demonstration of the method, a model of a hydraulic pressure relief valve
is presented. This problem is interesting because it contains several difficult
modelling phenomena, such as second order dynamics, variable limitations and
a non-linear flow function. A relief valve consists of a cone attached to a spring.
When pressure on the high-pressure side overcomes the pre-tension of the spring,
the cone will move, allowing oil to flow to the low-pressure side, see figure 5.

phigh

plow

k

Fig. 5. A pressure relief valve consists of a spring-loaded cone. It will open when the
force from the high-pressure side exceeds the pre-load of the spring.

The cone is modelled as an inertia with damping and end of stroke limitations.
It is subjected to a spring force, a spring pre-load and the forces from the low
and high oil pressure, see equation 16. The flow is a function of the square root



of the pressure difference. Square roots, however, are undefined for numbers that
are smaller than or equal to zero. For this reason, a sign function is used. An
overlapping is also introduced to avoid the non-linearity at zero, see equation
17. Normally, a model of a hydraulic valve should take cavitation (zero pressure)
into account. For time and space reasons, this has been left out in this example.

Mvẍv +Bvẋv + kexv = (p1 − p2 − pref )Av (16)

q = CqA

√
2

ρ
(p1 − p2) (17)

The Modelica code is shown in listing 1.2. An annotation is added that
tells Hopsan that this is a Q-type component (see section 2). Two hydraulic
connectors and two signal connectors are then added; the latter are used to show
cone position and cone velocity for debugging purposes. Parameters are specified
in standard Modelica syntax with type, name, unit, default value and description.
Four local variables are also used. These are assigned in the algorithm section,
before the equations. Moving explicit expressions from equations to algorithms
like this can greatly improve simulation performance. In the equation section,
the Variable2Limits function is written among the other equations. The two
equations above must define the variable and the derivative to be limited. The
limit equation will not be included in the system equations later on; it will
be removed once the limitation is applied. The resulting Jacobian matrix and
system equations are shown in equation 18.


1 0 0 0 f(p1, p2) f(p1, p2)

f(p1, p2, xv) 1 0 0 f(xv) f(xv)
f(p1, p2) 0 1 0 f(p1, p2, xv) f(p1, p2, xv)

0 0 1 1 0 0
0 0 0 −Zc1 1 0
0 0 −Zc1 0 0 1




xv

dxv
q2
q1
p1
p2

 =


f(p1, p2, q2, xv)

f(dxv, p1, p2, xv)
f(dxv, xv)
f(q1, q2)
f(p1, q1)
f(p2, q2)


(18)

The example model was verified against an existing model of a relief valve
written in plain code. For this, an example model consisting of a volume provided
with constant flow, connected to a pressure relief valve and an orifice was used,
see figure 6. The size of the orifice is reduced by a step function after 0.3 seconds
to test the dynamics of the relief valve. All components in the test system model
were created from Modelica equations and compared to a reference system model
where all components were written in plain code. The resulting pressure in the
volume in the two models are shown in figures 7 and 8.

Simulation performance was investigated by running 106 iterations and mea-
suring simulation time. The model generated from Modelica had an average
of 2379 ms while the reference model was notably faster, with an average of
454 ms. Enabling the multi-core support in Hopsan on a dual-core computer re-
duced simulation time for the generated model to 1696 ms. The reference model



Q

Fig. 6. A system model consisting of a pressure relief valve connected to a volume with
a flow source and an outlet orifice was used for validation.

performed less well with parallel simulations, due to overhead time costs. Com-
paring the smallest average time for both models, the Modelica model was 4.535
times slower than the reference model. A fair comparison with another simula-
tion tool is not possible because Hopsan is the only tool with support for TLM
with correct time delays. In the test run, only one iteration was used in the
solvers. This was sufficient to give accurate results when using the same time
step as the reference model.

1.6e+07

1.7e+07

1.8e+07

1.9e+07

2e+07

2.1e+07

2.2e+07

0.1 0.2 0.3 0.4 0.5

P
re

ss
u
re

 [
Pa

]

Time [s]

Fig. 7. When the pressure relief valve reaches its reference value it will have some
oscillations due to the mass-spring dynamics and a disturbance after .3 seconds.



1.6e+07

1.7e+07

1.8e+07

1.9e+07

2e+07

2.1e+07

2.2e+07

0.1 0.2 0.3 0.4 0.5

P
re

ss
u
re

 [
Pa

]

Time [s]

Fig. 8. The generated model show no differences in simulation results compared to the
reference model.

model MyPressureReliefValve "My Hydraulic Pressure Relief Valve"
annotation(hopsanCqsType = "Q");

NodeHydraulic P1, P2;
NodeSignalOut xv, dxv;

parameter Real rho(unit="kg/m^3")=870 "Oil Density";
parameter Real visc(unit=Ns/m^2"")=0.03 "Dynamic Viscosity";
parameter Real Dv(unit="m")=0.03 "Spool Diameter";
parameter Real Bv(unit="N/(m*s)")=0.03 "Damping Coefficient";
parameter Real Mv(unit="kg")=0.03 "Spool Mass";
parameter Real Xvmax(unit="m")=0.03 "Maximum Spool Displacement";
parameter Real Cq(unit="-")=0.67 "Pressure -Flow Coefficient";
parameter Real phi(unit="rad")=0.01 "Stream Angle";
parameter Real ks(unit="N/m")=100 "Spring Constant";
parameter Real p0(unit="Pa")=1e5 "Pressure For Turbulent Flow";
parameter Real pref(unit="Pa")=2e7 "Reference Opening Pressure";

Real Av "Valve Cross Section Area";
Real w "Area Gradient";
Real kf "Flow Force Spring Constant";
Real ke "Total Effective Spring Constant";

algorithm
Av := 3.1415*Dv**2/4;
w := 3.1415*Dv*sin(phi);
kf := 2*Cq*w*cos(phi)*(p1-p2);
ke := ks+kf;

equation
Mv*der(der(xv.out))+Bv*der(xv.out)+ke*xv.out = (P1.p-P2.p-pref)*Av;
Mv*der(dxv.out)+Bv*dxv.out+ke*xv.out = (P1.p-P2.p-pref)*Av;
VarDerLimit(xv.out , dxv.out , 0, Xvmax);
P2.q = xv.out*Cq*w*sqrt(2/rho)*(sqrt(p0+abs(P1.p-P2.p))-sqrt(p0))*sign(P1.p-P2.p);
P1.q = -P2.q;
P1.p = P1.c+P1.Zc*P1.q;
P2.p = P2.c+P2.Zc*P2.q;

end MyPressureReliefValve;

Listing 1.2. A hydraulic pressure relief valve was modelled in Modelica. A special
variable limitation function was introduced.



6 Conclusions

A distributed solver approach provides good numerical properties and is suit-
able for running parallel simulations. This paper presents a method for gener-
ating components for a distributed solver simulation tool using the Modelica
language. A solution for efficiently implementing variable limitations, including
their derivatives, is also described. Finally, the method is demonstrated by gen-
erating a dynamic model and comparing it to a reference model written in plain
C++ code.

Results show that the method is applicable. Experimental results show no
fundamental differences in simulation results compared to a reference model.
The generated model is, however, substantially slower than the reference model.
This was expected since equation-based models require the solvers to do more
work than in a manually coded model, where equations to a large extent can be
solved beforehand. Optimizing simulation performance further is, however, still
desirable, especially if models are to be used in real-time applications. Possible
speed-ups could be achieved from performing the LU decomposition analytically
before generating the components, instead of numerically each time step. Further
simplification of the equations may also be possible, as well as optimizing the
generated code and the solver.

The model generation in itself was quite slow, due to the use of a Python
package. Some symbolic operations in SymPy are also not implemented for spe-
cial cases, and therefore not fully reliable. A great improvement would be to use
a C++ library for symbolic computations instead. Using the Modelica parser
and rewriting it for distributed solvers could also be an option.

One of the most important advantages of using equation-based modeling
with distributed solvers is scalability. The time required for solving an equation
system numerically increases super-linearly to the number of equations, making
centralized solvers slow for large models. With distributed modeling, the equa-
tion system is naturally decomposed into one small system for each component,
which can greatly reduce simulation time.

7 Acknowledgements

This work was supported by ProViking research school and the Swedish Foun-
dation for Strategic Research (SSF).

References

[1] R. Braun, P. Nordin, B. Eriksson, and P. Krus. High Performance System Simula-
tion Using Multiple Processor Cores. In The Twelfth Scandinavian International
Conference On Fluid Power, Tampere, Finland, May 2011.

[2] A. Jansson, P. Krus, and J-O Palmberg. Variable time step size applied to sim-
ulation of fluid power systems using transmission line elements. In Fifth Bath
International Fluid Power Workshop, Bath, England, 1992.

http://www.chalmers.se/hosted/proviking-sv
http://www.stratresearch.se/
http://www.stratresearch.se/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68373
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68373


[3] Petter Krus. An automated approach for creating component and subsystem
models for simulation of distributed systems. In Proceeedings of the Nineth Bath
International Fluid Power Workshop, Bath, England, 1996.

[4] B. Johansson and P. Krus. Modelica in a Distributed Environment Using Trans-
mission Line Modelling. In Modelica 2000 Workshop, Lund, Sweden, October
2000.

[5] Kaj Nystrm and Peter Fritzson. Parallel Simulation with Transmission Lines in
Modelica. In 5th International Modelica Conference, Vienna, Austria, September
2006.

[6] M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards Efficient Distributed
Simulation in Modelica using Transmission Line Modeling. In 3rd International
Workshop on Equation-Based Object-Oriented Languages and Tools, Oslo, Nor-
way, October 2010.

[7] http://www.iei.liu.se/flumes/system-simulation/hopsanng/, February 2012.
[8] P. Krus. Robust System Modelling Using Bi-lateral Delay Lines. In Proceed-

ings of the 2nd Conference on Modeling and Simulation for Safety and Security,
Linköping, Sweden, 2005.

[9] Air Force Aero Propulsion Laboratory. Aircraft hydraulic system dynamic anal-
ysis. Technical report, Air Force Aero Propulsion Laboratory, 1977.

[10] P.B. Johns and M.A. O’Brian. Use of the transmission line modelling (T.L.M)
method to solve nonlinear lumped networks. The Radio And Electronic Engineer,
50(1/2):59–70, 1980.

[11] D.M. Auslander. Distributed system simulation with bilateral delay-line models.
Journal of Basic Engineering, pages 195–200, June 1968.

[12] Petter Krus. Robust Modelling Using Bi-Lateral Delay Lines for High Speed Sim-
ulation of Complex Systems. In DINAME 2011 : 14th International Symposium
on Dynamic Problems in Mechanics, 2011. Invited conference contribution.

[13] M. Vlach. Lu decomposition and forward-backward substitution of recursive bor-
dered block diagonal matrices. Electronic Circuits and Systems, IEE Proceedings
G, 132(1):24 –31, february 1985.

[14] M. Axin, R. Braun, A. Dell’Amico, B. Eriksson, P. Nordin, K. Pettersson,
I. Staack, and P. Krus. Next Generation Simulation Software Using Transmis-
sion Line Elements. In Fluid Power and Motion Control, Bath, England, October
2010.

[15] B. Eriksson, P. Nordin, and P. Krus. Hopsan NG, A C++ Implementation Using
The TLM Simulation Technique. In The 51st Conference On Simulation And
Modelling, Oulu, Finland, 2010.

[16] David Joyner, Ondřej Čert́ık, Aaron Meurer, and Brian E. Granger. Open
source computer algebra systems: Sympy. ACM Commun. Comput. Algebra,
45(3/4):225–234, January 2012.

[17] SymPy Development Team. Sympy. http://sympy.org/, February 2012.
[18] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Mod-

elica 2.1. Wiley-IEEE Computer Society Pr, 2006.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-35277
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-35277
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-37370
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-37370
http://www.ep.liu.se/ecp/047/
http://www.ep.liu.se/ecp/047/
http://www.iei.liu.se/flumes/system-simulation/hopsanng/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-29481
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67897
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67897
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59661
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59661
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60644
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60644
http://sympy.org/

	Towards A Parallel Distributed Equation-Based Simulation Environment

