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Abstract: Several methods are applied to find the input variables with predictive power to the degree of 
desulphurization modelling. The methods are applied on the data from a desulphurization plant 
processing flue gases coming from a coal-fired power plant. In non-linear and complex industrial 
processes, the nature of the relationships between the variables may be vague and a functional model 
based on a physical interpretation of the process may be difficult to define. Data-driven statistical 
modelling approaches are, therefore, reasonable alternatives. However, such models may become 
corrupted due to the inclusion of uninformative, weakly informative or redundant variables. Linear 
correlation coefficients, principal component analysis and regression, partial least squares regression, 
mutual information based algorithms and the general regression neural network are tested in the selection 
of the informative variables. The results obtained are relevant to desulphurization plant monitoring 
development.  
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1. INTRODUCTION 

In model development, the preliminary assumption is that 
one or several candidate variables are capable of describing 
some of the output behaviour. The input variable selection 
task is common to the development of all statistical models. 
It depends on the discovery of relationships within the 
available data. In the case of parametric, or semi-parametric 
empirical models, the difficulty of the input variable selection 
task is somewhat alleviated by the a priori assumption of the 
functional form of the model, which is based on some 
physical interpretation of the underlying system or process 
being modelled (May et al. 2011). Although such a model is 
theoretically the most accurate, it may be difficult to develop. 
Data-driven statistical modelling approaches do not have an 
assumption regarding the model structure. Instead, the model 
is developed after the variable selection or the variables are 
selected simultaneously during the model training. 

Several aspects impact on the formation of an optimal input 
set. First of all, d potential inputs form 2d-1 input subsets. 
The testing of all the subset combinations with a large d 
requires efficient algorithms. Including more inputs in a 
model increases the computational burden of the model. This 
is further exacerbated in time series studies, in which 
appropriate lags must be chosen. As the lag of input time 
series increases, so does the number of inputs to the model 
and consequently the memory requirement of the model 
increases. According to ‘the curse of dimensionality’ by 
Bellman (1961), the linear increase in the dimensionality of 
the model results in the total volume of the modelling 
problem domain increasing exponentially. Moreover, 
understanding complex models is more difficult than 

understanding simple models that give comparable results. 
Inclusion of redundant and irrelevant input variables worsens 
the training of the models – especially artificial neural 
networks (ANNs). Redundant variables increase the number 
of local minima in the error function that is projected over the 
parameter space of the model (Bowden et al. 2005; May et al. 
2011). Irrelevant variables add noise into the model inducing 
misconvergence and poor model accuracy. The most 
important characteristic of the input set is the inclusion of 
predictive power. In conclusion, the optimal input variable 
set has the fewest input variables needed to describe the 
behaviour of the output, with minimum redundancy and 
without uninformative variables. 

Using analytical methods to define an optimal input set 
evidently has advantages. However, a unifying theoretical 
framework is lacking (May et al. 2011). The approaches are 
diverse, but can be broadly classified into three main classes: 
wrappers, filters and embedded methods (Guyon and 
Elisseeff, 2003). Wrappers approach the task as part of the 
optimisation of model architecture. The optimisation searches 
through the input combinations and selects the set which 
yields the optimal generalisation performance of the trained 
learning machine. Embedded methods perform variable 
selection in the process of training and are usually specific to 
given learning machines. Filters distinctly separate the 
variable selection task from the specific learning machine. 
Filters use statistical analysis techniques to measure the 
relevance of individual, or combinations of, input variables. 
The approach provides a generic selection of variables, not 
tuned for the specific learning machine. The approach can be 
also used as a pre-processing step to reduce space 
dimensionality and overcome overfitting. Sophisticated 

     



 
 

 

wrappers and embedded methods improve predictor 
performance compared with simple variable ranking 
methods, but the improvements are not always significant 
(Guyon and Elisseeff, 2003). Wrappers and filters require a 
criterion or test to determine the influence of the selected 
input variable or variables and a strategy for searching among 
the combinations of candidate variables (May et al. 2011). 

In this study, data from the desulphurization plant of a coal-
fired power plant is analysed. Process systems generally 
contain varying degrees of non-linearity. Consequently, the 
presumption is that the process model should be non-linear 
although linear parts could be involved in the plant 
behaviour. Because of this, Artificial Neural Networks 
(ANNs) which are capable of modelling non-linear 
relationships give a good premise for modelling. ANN 
architectures can be built with arbitrary flexibility and can be 
successfully trained using any combination of the input 
variables which are good predictors. The model-free input 
variable selection approach – implying the filters – is 
considered here. The linear relationships of the candidate 
variables to the response variable – degree of 
desulphurization – are analysed with cross-correlations and 
partial correlation. Dimensionality reduction is performed by 
forming the linear combinations of the original variables by 
using Principal Component Analysis (PCA) and Partial Least 
Squares (PLS) regression. To get a grasp of the non-linear 
relationships among the variables, Mutual Information (MI) 
based criteria are used. In addition to all the original 
variables, the selections produced by correlation analyses are 
used as inputs to PCA and PLS regression; the selections 
from correlation analyses and the input scores produced by 
PCA and PLS regression are used as inputs to the evaluation 
of the mutual information based criteria. To obtain a 
generalized impression of the performance of all the formed 
input variable sets, General Regression Neural Networks 
(GRNNs) are trained. This type of neural network is chosen, 
because it can be designed very quickly. PLS regression 
models are tested for comparison. The next Section explains 
the used methods and the process being analysed. The main 
results are presented and discussed thereafter. 

2. METHODS AND MATERIALS 

2.1 Linear and Non-linear Filters 

Filter algorithms typically measure relevance and optimality 
criteria that are used to discover the important input 
variables. Incremental search strategies tend to dominate the 
filter approaches, because the relevance measure is typically 
bivariate statistic of the candidate-output relationship. Each 
of the relationships is evaluated. Currently, two broad classes 
of filters have been considered: those based on linear 
correlation; and those based on information theoretic 
measures, such as mutual information (May et al., 2011). 

Input variable ranking based on the Pearson correlation is one 
of the most widely used methods. The candidate variables are 

sorted by the order of decreasing correlation and the selection 
is based on greedy selection of the first k variables, or upon 
all variables having correlation significantly different from 
zero. The method is classed as a maximum relevance filter 
and only the interactions between each candidate and the 
output is considered. The Pearson correlation, Rxy, is defined 
by 
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where xi, yi x , y and n are the candidate variable, the target 
variable, the corresponding mean values and the total number 
of observations, respectively. In (1), the numerator is simply 
the sample covariance; and two terms in the denominator are 
the square root of the sample variances. 

If the candidate variables are themselves correlated, 
redundancy is an important issue. In such a case, the 
correlation ranking approach is likely to select too many 
variables, since many candidates will each provide the same 
information regarding the target variable. Given three 
variables x, y and z, the partial correlation measures the 
correlation between x and y after the relationship between y 
and z has been discounted. The partial correlation Rxy·z can be 
determined from the Pearson correlation using 
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The limitations of linear correlation analysis have created 
interest in alternative statistical measures of dependence, 
which are more adept at identifying and quantifying 
dependence that may be chaotic or non-linear; and which 
may therefore be more suitable for the development of ANN 
models (May et al. 2011). Mutual information is a measure of 
dependence that is based on information theory and the 
notion of Shannon’s (1948) entropy, and is determined by the 
equation 
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where p(x) and p(y) are the marginal probability density 
functions of x and y, respectively; and p(x,y) is  the joint 
(bivariate) density. I(x;y) denotes the mutual information, 
which is a measure of dependence between the density of the 
variable x and the density of the target y. Mutual information 
measures the quantity of information about a variable y that is 
provided by a second variable x. The advantage of mutual 
information over linear correlation is that it is based solely on 
probability distributions within the data and is therefore an 
arbitrary measure, which makes no assumption regarding the 
structure of the dependence between variables (May et al., 
2011). The difficulty is that the densities p(x), p(y) and p(x,y) 
are all unknown and hard to estimate from data. The case of 

     



 
 

 

continuous variables is the hardest. One can consider 
quantizing the variables or approximating their densities with 
a non-parametric method such as Parzen windows (Guyon 
and Elisseeff, 2003). 

In feature selection literature, there are several filters using a 
variety of heuristic criteria based on mutual information. 
Current best practice has been to hand-design the criteria, 
augmenting the individual feature relevance with various 
penalties to manage the feature redundancy (Brown, 2009). 
Brown (2009) offers a descriptive “top-down” framework, 
showing that several heuristic criteria in the literature can be 
expressed in a common functional form 
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where β and γ are configurable parameters varying in 
[0,1].Variable xn is the nth variable being evaluated; xk 
represents the already selected variables; and y is the target 
variable. The first term I(xn;y) ensures feature relevance 
(mutual information); the second term with the parameter β 
penalises high correlations (redundancy) between variable 
itself and the existing variables; the third term with the 
parameter γ depends on the class conditional probabilities. 
Brown (2009) has identified 12 separate criteria that can be 
described within this framework; four of them are tested in 
this study. Mutual Information based Feature Selection 
(MIFS) criterion by Battiti (1994) includes the relevance and 
redundancy but omits the conditional term. Maximum-
Relevance Minimum-Redundancy (MRMR) criterion by 
Peng et al. (2005) takes the mean of the redundancy term, but 
omits the conditional term. Joint Mutual Information (JMI) 
criterion by Yang and Moody (1999) has all the three terms 
and can be defined by (5). Conditional Mutual Information 
Maximization (CMIM) by Fleuret (2004) can be defined by 
(6): 

[ ,)|;();(
1

1);(
1

1
∑

−

=

−
−

−=
n

k
knknnjmi yxxIxxI

n
yxIJ ]

]

          (5) 

              (6) [ .)|;();(max);( yxxIxxIyxIJ knknkncmim −−=

2.2 Principal Component Analysis and Regression 

Principal component analysis (PCA) is a commonly adopted 
technique for reducing the dimensionality of a dataset X. 
PCA achieves dimensionality reduction by expressing the d 
variables (x1,...,xd) as k feature vectors named principal 
components (PCs). Mathematically, PCA relies on an 
eigenvector decomposition of the covariance or correlation 
matrix of the process variables. PCA is scale-dependent, and 
therefore, it is conventional to adjust the variables to zero 
mean and unit variance. PCA decomposes the data matrix X 
as the sum of the outer product vectors ti and pi plus a residual 
matrix E (Wise and Gallagher, 1996): 
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The ti vectors are known as scores and contain information on 
how the samples relate to each other. The scores form an 
orthogonal set (ti

Ttj = 0 for i ≠ j). The pi vectors are known as 
loadings and pi are eigenvectors of the covariance matrix. 
The ti, pi pairs are arranged in descending order according to 
the associated eigenvalue λi. The first pair captures the largest 
amount of variation in the data that is possible to capture with 
a linear factor. Each subsequent pair captures the greatest 
possible amount of variance remaining at that step. Usually, it 
is not practical to compute all the k eigenvectors, since most 
of the variability in the data is typically captured in the first 
few PCs. A common selection method is to choose all the 
PCs whose eigenvalues exceed some threshold λ0, or generate 
a plot of the cumulative eigenvalue as a function of the 
number of PCs so that the desired amount of variance is 
explained (May et al. 2011). 

Alternatively, Principal Component Regression (PCR) can be 
used to select the PCs. Then, multiple linear regression 
models are built based on response variables Y and varying 
number of PCs explaining X. Selection of the components 
can be done by choosing the PCs that optimize the predictive 
ability of the model (Wise and Gallagher, 1996). Typically, 
the available data is divided into training and validation sets. 
The residual error of prediction on the validation samples is 
determined as a function of the number of PCs. In k-fold 
cross-validation, the original set is randomly partitioned in k 
subsamples. Thus, in 10-fold cross-validation 90 % of the 
data is used to train the model and 10 % is used in validation. 
Each subsample is used exactly once as the validation data. 

2.3 Partial Least Squares Regression 

Partial Least Squares (PLS) regression extracts latent 
variables that explain the variation in the predictor variables 
X and the variation in X which is the most predictive of the 
response variables Y. In other words, PLS attempts to find 
factors that are correlated with Y while describing a large 
amount of the variation in X. As a point of comparison, in 
PCR the components solely explain the variance in X. As in 
PCA, the latent vectors or scores (t1, t2...) are orthogonal. The 
selection of components can be done like in PCA and PCR. 
In addition to choosing the components that explain the most 
variance in X, the components that explain the most variance 
in Y can be chosen. See Geladi and Kowalski (1986) for more 
detailed information on PLS regression. 

2.4 General Regression Neural Networks 

Developed by Specht (1991), the general regression neural 
network (GRNN) is a supervised feedforward artificial neural 
network. It uses a nonparametric estimate for the probability 
density function of the data. Non-linear relationships between 
inputs and output can be modelled with a GRNN. The 
network architecture is fixed which means that multiple 
models do not need to be trained to optimise the network 

     



 
 

 

architecture. It has only a single parameter, the kernel 
bandwidth, which needs to be learned during training. The 
parameter is named ‘spread’ hence. Training is much faster 
than with other artificial neural networks, such as Multi-
Layer Perceptrons (MLPs) trained using the backpropagation 
algorithm. The GRNN uses memory based (lazy) learning, 
and therefore it has an increased memory requirement to store 
the training data and a greater computational requirement 
when querying the network than an MLP. Further 
information about the method can be found in Specht (1991). 

2.5 Performance Criteria 

Three criteria are adopted for assessing the models 
developed. The popular measure of predictive performance is 
the mean squared error (MSE). Another statistical error 
measure is the mean absolute error (MAE). Goodness-of-fit 
can be evaluated with the coefficient of determination (r2). 
The drawback of these criteria is that the best result does not 
necessarily mean an optimal model. Models with large 
number of input variables tend to be biased as a result of 
overfitting. In (8), (9), and (10), yj , y , j , ŷ y~ , and n are the 
observed value, the mean of the observed value, the 
corresponding predicted value, the mean predicted value and 
the total number of observations, respectively. The criteria 
are expressed as: 
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2.6 Desulphurization Process and the Data 

The coal-fired Salmisaari power plant consists of two main 
units for energy production and a desulphurization plant, 
which processes the flue gases from both main units. Boiler 1 
is a combined heat and power plant with the capacity of 160 
MWel and 300 MWth and boiler 7 is a heat unit with the 
capacity of 180 MWth. The efficiency of nearly 90 % is 
reached in combined heat and power generation. 

The desulphurization plant consists of two parallel reactors 
which process the flue gases. Fig. 1 demonstrates the 
principle of operation. Flue gases from the furnace of the 
steam boiler of the power plant arrive at the electrostatic 
precipitator (‘preliminary separator’) which separates fly ash. 
Flue gases without any solid particles come to the reactor 
from above and are mixed with lime sludge using compressed 
air. The particles of sludge and sulphur dioxide molecules are 
partly mixed in the reactor and reaction products fall at the 

bottom of the silo. Reaction continues in bag filters, in which 
gases flow through textile tube and 99.7 % of solid particles 
remain on its walls. Purified gases go via the fans into the 
chimney and out in the air. Middle product accumulating at 
the bottom of the reactor is used to produce sludge, and 
necessary amount of end product from below the filter is 
added to it. Together with water, these form the base of 
sludge. Lime is added in the form of lime milk to achieve the 
desired level of desulphurization. The amount of sludge 
pumped into the reactor is controlled so that all water in 
sludge evaporates and flue gas going to the filter is dry. The 
method is called half-dry, because the chemical reaction 
occurs partly in the wet, partly in the dry state. The outgoing 
end product is used for earth works such as filling ditches, 
strengthening man-made hills or under the dumping areas. 

The variable y for the degree of desulphurization is formed 
from the similarly standardized SO2 concentration 
measurements from the flue gas before (SO2

in) and after 
(SO2

out) the desulphurization plant. Therefore, the equation y 
= 1 – SO2

out / SO2
in was considered proper for this study. 

Table 1 shows some characteristics of the used data. One 
hour average data is used. Data sets A and B represent the 
typical operation of the plant; data sets C and D represent a 
campaign during which higher than the typical degree of 
desulphurization was used. The set E is a combination of A, 
B and D. 1686 hours were removed from the set due to 
memory overflows during the training of GRNNs with the 
full length data. Thus, the final length of E was 3000 hours. 
The term ‘std’ is standard deviation. The candidates for a 
model input set include 66 variables. The variables that are 
presented in Section 3 are described in Table 2. The set 
included some computational variables. With y and other 
computational variables, it has to be noticed that the 
uncertainty of measurement is cumulative. The values 
produced by the computations are less accurate than the 
single original measurement values. However, the 
measurement uncertainty is not considered in this study any 
further. Equations for x57, x58, x64, and x65 are presented in 
(11), (12), (13), and (14):  
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Table 1.  Description of the used data 

set year/month length degree of desulph. (%) 

  (hours) mean std max min 

A 2009/12 - 2010/5 2801 69.2 6.1 91.9 32.0 

B 2009/10-12 1401 71.5 7.6 91.6 51.0 

C 2012/1-3 969 81.4 4.0 92.1 67.4 

D 2012/3 484 87.2 2.1 96.0 80.0 

E (part of A)+B+D 3000 74.9 8.2 96.0 51.0 

 

Table 2.  Candidate variables 

variable explanation 

x1 sludge volume flow to reactor 1 

x2 sludge volume flow to reactor 2 

x3 sludge density in feeding tank 

x6 pressure over reactor 1 inlet duct 

x7 pressure over reactor 2 inlet duct 

x8 SO2 emission measurement before desulphurization plant 

x9 Power plant power output 

x11 H2O in B chimney 

x14 feeding tank level 

x16 mixing water volume flow 

x17 mixing tank density 

x20 O2 after electrostatic precipitator 1 

x22 flue gas temperature before desulphurization plant 

x23 flue gas pressure before desulphurization plant fan 

x24 flue gas pressure after desulphurization plant fan 

x27 circulating dust silo level 

x28 raw water volume flow to feeding tank 

x32 NOx in B chimney  

x33 NOx into A chimney 

x36 pressure difference over reactor 1 

x37 pressure difference over reactor 2 

x38 pressure difference over bag filters 1 

x42 O2 in boiler 1 flue gas 

x44 CO2 in boiler 1 flue gas 

x45 pressure after electrostatic precipitator from unit 7 

x52 SO2 mass flow from unit 1 

x53 SO2 mass flow from unit 7 

x57 'ratio of sludge and SO2 into reactor 1' 

x58 'ratio of sludge and SO2 into reactor 2' 

x59 'sum of sludge mass flows to reactors 1 and 2' 

x60 'sum of flue gas flows from units 1 and 7' 

x62 flue gas temperature out of reactor 2 

x63 SO2 mass flow to desulphurization plant 

x64 'ratio of sludge flow and SO2 mass flow' 

x65 'ratio of SO2 before desulph. plant and feeding tank level' 

 

 

Fig. 1. The desulphurization plant with half-dry method 
(Helsinki Energy Board, 1980s). 

 
3. RESULTS 

In this Section, the mentioned methods are applied to the 
Salmisaari data. All the studies were performed using Matlab 
(version 7.12) software (Mathworks Inc., Natick, MA, USA, 
2011). All the methods were applied on data normalized to 
zero mean and unit variance. The main results are presented 
and discussed. 

3.1 Correlations 

Correlation coefficients were studied with data sets A and C. 
Only the coefficients to the response variable y were studied. 
Cross-correlations were used to find the 24 hour lags. Data 
was normalized so that auto-correlations at zero-lag were 
identically 1.0. The results with zero-lag correspond to the 
output of (1). Data was modified with logarithm of the 
absolute value, square, inverse, and square root of the 
absolute value. To define strong correlations two limits were 
made: Limit I was |Rxy|>2/ d , and limit II was |Rxy| > 0.5. 
The parameter d is the number of candidates. Table 3 shows 
the variables, of which correlations were larger than the limit 
II. The column with the title ‘zero-lag’ indicates the 
correlation without any modifications or lag. The column 
with the title ‘the largest’ indicates the largest correlations 
using the modified data. The column ‘modification’ shows 
the lag in hours and the method used to modify the data. 

     



 
 

 

Forty-nine variables measured up to the limit I with the set A, 
whereas the corresponding number was 43 with the set C. 
The variables that measured up to the limit I were tested with 
partial correlation in such a way that z included all the other 
variables that measured up to the limit I except the variable 
being tested. Using partial correlation, only a single variable 
x63 measured up to the limit I. The partial correlation 

was -0.333 with the set A, and -0.602 with the set C. zyxR ⋅63

Table 3.  The largest absolute correlations 

set A zero-lag the largest modification
x8 0.617 0.617 0 
x11 -0.640 -0.643 -1, log(|x|)
x17 -0.572 -0.572 0 
x27 0.543 0.584 -14, x²
x33 0.611 0.614 -3, x²
x44 -0.711 0.720 0, x¯ ̄ ¹
x45 -0.280 -0.690 -13, log(|x|)
x63 -0.598 -0.619 -1, x²
x65 0.610 0.610 0 

set C zero-lag the largest modification
x16 -0.376 -0.511 -1, x²
x20 -0.444 0.505 -23, x¯ ̄ ¹
x23 0.479 -0.502 -2, x²
x44 -0.571 -0.724 -11, log(|x|)
x52 -0.819 -0.825 0, x²
x53 -0.637 -0.637 0 
x62 -0.505 0.506 -21, x¯ ̄ ¹
x63 -0.816 -0.816 0 
x64 0.639 -0.783 0, x¯ ̄ ¹

 

3.2 Principal Component Analysis and Partial Least Squares 
Regression 

All the variables and only the variables that measured up to 
the correlation limits I and II were fed to PCA and PLS 
regression. PCA produced the same number of principal 
component scores which was the number of input variables. 
To reduce the dimensionality, the components were chosen 
based on the variance that they explain from the total 
variance of the input space. The variance of the components 
that explain most were summed up until the set criterion was 
measured up. In this study, the first limit was 80 %, the 
second was 95 %, and the third was 99 %. Table 4 shows the 
number of components explaining the defined variance using 
different data sets. On the sets A and B correlation selections 
from the set A were used, and on the sets C and D the 
selections from C were used. The percentage of variance 
explained in y was considered with PLS regression. The same 
limits were used and results are shown in Table 4. 

An alternative way to determine the proper amount of 
components was to develop regression models to the 
prediction of the response y. The models were built with data 
sets A, B, C, and D so that the amount of components varied 
from one to thirty. All the variables and only the variables 
that measured up to the correlation limit I were used. The 

models were validated with 10-fold cross-validation. The 
mean squared error performance was evaluated based on the 
difference between estimated y)  and actual y. The results 
from principal component regression validation are shown in 
Fig. 2. The y axis values correspond to the mean observed. 

Table 4. The number of components explaining the 
defined variance in X with PCA (left) and y with PLS 

regression (right) 

variance limit A B C D variables
80 8|3 8|4 11|4 8|5 all
95 19|9 18|8 24|8 20|7 all
99 29|28 28|22 35|13 29|15 all
80 4|2 6|2 6|3 5|3 cor. limit I
95 13|5 14|4 15|6 13|6 cor. limit I
99 23|14 22|12 25|11 20|18 cor. limit I
80 4|1 4|2 3|1 3|2 cor. limit II
95 6|2 7|2 6|2 6|5 cor. limit II
99 8|3 8|3 8|4 7|6 cor. limit II

 

The linear regression models performed relatively well taking 
into consideration the weak linear relationships of the 
variables to the response variable. MSE decreases as the 
number of components increases with some exceptions. MSE 
was below 0.43 using five components with all the data sets. 
Apart from the set D, MSE was below 0.28 with eight 
components. With sets A and B the standard deviations of 
MSE were low and decreasing as the number of components 
increased. The set C had the lowest standard deviation of 
MSEs with four to five components. Inclusion of components 
seemed to increase the standard deviation. The set D had 
lower than 0.1 standard deviations the first time with 16 
components. The results show that using a large number of 
components will generally do a good job in fitting the current 
observed data. On the other hand, it is a strategy that can lead 
to overfitting and can give an overly optimistic estimate for 
the expected error. Fig. 2 indicates that achieving a quite 
constant MSE level needs three to seven components, which 
can be interpreted as a proper amount of input components 
for a principal component regression model. 
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Fig. 2. Principal component regression validation results. 

Fig. 3 shows corresponding results for PLS regression. The 
MSE reaches a relatively low level when the model has three 
or four components, and the level stays quite constant when 

     



 
 

 

the amount of components is increased. Also the standard 
deviation of MSE was quite constant after the fourth 
component apart from the C set. In general, the performance 
of PLS regression was somewhat better than PC regression 
using a small number of components. The results indicate 
that a proper amount of components for a PLS regression 
model is slightly smaller than for a PC regression model.  
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Fig. 3. Partial least squares regression validation results. 

3.3 Mutual Information Based Criteria 

All the variables, PCA scores, and PLS regression input 
scores together with the response variable were analysed with 
the mutual information based criteria using data sets A, B, C, 
and D. PCA and PLS regression scores were done using all 
the candidates. The procedure greedily chose the variable 
with the largest incremental gain until the chosen number of 
variables was reached. The number of the input variables to 
be selected was chosen to be 20 variables. The continuous 
variables were quantized for the mutual information 
calculations. The data of each variable were quantized in the 
first case to 10 bins and in another case to 100 bins so that the 
bin limits were quantiles with a regular interval. In MIFS, the 
heuristic weighting β was chosen to be 0, 0.5, and 1 in 
different tests. When β = 0, the method is reduced into 
mutual information ranking. In conclusion, 3·4·2·6=144 
input sets were created. Because of limited space, Table 5 
shows only the largest mutual information of ten first 
variables chosen from sets A and C together with the set B 
(10 bins), which eventually led to the most promising 
modelling result.  

Table 5 shows that the quantization has a large effect on the 
result. With all the tested criteria, the first selected variable 
was always the same on the same data set, but could differ 
based on the quantization as Table 5 indicates with C. The 
subsequent variables varied based on the criteria used. This 
arises from the varying emphasis the different criteria have 
on the redundancy and conditional terms of (4). Obviously, 
the varying operational states of the different sets have an 
influence in the varying selections of input variables. The 
same is seen in correlation rankings, see Table 3. 

 

Table 5. The largest mutual information using sets A, C, 
and B 

set A set C set B
10 bins 100 bins 10 bins 100 bins 10 bins

x44,0.6773 x44, 2.4090 x52,0.9652 x65,3.5723 x63,0.6883 
x45,0.6194 x8, 2.3962 x64, 0.9198 x8,3.5400 x45,0.5371 
x11,0.5062 x65, 2.3961 x63, 0.8950 x59,3.5145 x32,0.5012 
x65,0.4758 x45, 2.3339 x53, 0.7426 x64,3.5134 x64,0.4798 
x8,0.4703 x11, 2.3314 x44,0.6950 x57,3.5018 x22,0.4500 
x33,0.4481 x7, 2.3111 x65,0.4806 x58,3.5013 x44,0.4317 
x17,0.4285 x36, 2.3033 x8,0.4520 x9,3.4994 x53,0.3935 
x42,0.4210 x37, 2.2976 x24,0.4336 x62,3.4990 x52, 0.3879 
x63,0.4038 x52, 2.2929 x42,0.4206 x24,3.4916 x23,0.3716 
x27,0.3916 x62,2.2799 x28,0.4193 x38,3.4909 x65,0.3690 

 

3.4 Evaluation of the Selected Inputs in Modelling 

Evaluation of the chosen sets was done with a heuristic trial-
and-error approach by building GRNNs with different input 
sets. In GRNNs, spread values 0.1, 0.5, 1, 2, and 10 were 
tested, but an optimal value for the spread value was not 
searched for. To test GRNNs, there were three cases. In the 
first case, the network was trained with the set A and the 
performance was tested with the set B. In the second case, the 
network was trained with the set C and tested with the set D. 
In the third case, the sets A, B, and D formed the training set 
E and the set C was the test set. The number of components 
from PCA and PLS regression were chosen based on the 
variance limits discussed earlier. Only the number of 
components defined with the sets A and C were used. 
Considering correlation, PCA, and PLS regression sets, the 
selected sets formed from the analysis of A were used to train 
GRNNs on A set and E set. Similarly, sets formed from the 
analysis of C were used to train GRNNs on C set and E set. 
Mutual information criteria based selections were tested with 
all the 20 selected variables and with only ten variables 
which were chosen first by each criterion. All of these 
selections were used on each training set A, C, and E. Sets 
formed based on linear correlations included zero lagged 
variables without any modifications. GRNNs were trained 
with every input variable set, spread value, and training set 
(A, C, and E) separately. Therefore, the number of trained 
GRNNs was 2·5·2 + 4·5 + 9·5·2 +18·5 + 9·5·2 + 18·5 + 
144·5·3 + 144·5·3 = 4720. 

The model prediction performance on the test sets was 
monitored with mean squared error, mean absolute error, and 
the coefficient of determination. Table 6 shows the best 
results of the GRNN performance on the test sets with the 
input sets formed with the different methods. From the test 
sets B and D only the better result is shown. The best result at 
the last row of Table 6 was achieved with MIFS (β = 0) from 
the analysis of the set B. All the presented mutual 
information criteria based results in Table 6 were reached 
with data quantized into ten bins. 

     



 
 

 

The best performing neural networks were obtained with 
input sets that were formed by mutual information based 
criteria using data quantized into ten bins. Obviously, the 
quantization into 100 bins was not a proper method. Mutual 
information criteria based sets performed better with ten than 
twenty variables indicating that the amount of input variables 
is highly important part of the selection. A neural network 
with PLS regression input scores as inputs performed poorly. 
Variables chosen by the linear correlation produced slightly 
better performing models than the models with PCA scores 
as inputs.  

Table 6. General regression neural network prediction 
performance without validation 

method MSE MAE r² spread test set 
correlation 0.54 0.58 0.46 1 B 

PCA 0.54 0.59 0.46 1 B 
PLS regression 0.72 0.63 0.28 0.1 D 

MI-based (20 var.) 0.42 0.49 0.58 1 B 
MI-based (10 var.) 0.36 0.46 0.64 1 B 

correlation 0.44 0.51 0.56 1 C 
PCA 0.52 0.54 0.48 1 C 

PLS regression 0.92 0.76 0.07 0.1 C 
MI-based (20 var.) 0.36 0.48 0.64 1 C 
MI-based (10 var.) 0.30 0.41 0.70 1 C 

 

The performance of the best performing GRNN was 
compared with PLS regression models, which were built with 
the same input set. Also the linear correlation sets were tested 
in PLS regression models for the sake of comparison. In PLS 
regression models, one to nine latent variables (components) 
were tested. Training and test sets were composed from the 
set E, which was randomly partitioned into ten subsamples of 
the same size; validation set was the set C. 10-fold cross-
validation was performed to validate the results. Table 7 
summarises the performance of the models. The values 
correspond to the mean observed. The corresponding 
variability is indicated by the standard deviations, which are 
the values in parentheses. The presented results are chosen so 
that the validation MSE is as small as possible. The PLS 
regression model with the correlation limit I set in Table 7 
has two latent variables; the model with MI-based set has 
three latent variables. Fig. 4 shows the normalized degree of 
desulphurization and the predictions by the GRNN and PLS 
regression models on the validation period C. The predictions 
do not follow all the peaks or slower changes in the degree of 
desulphurization; the predictions have some harsh errors as 
well. Some of these parts are marked by red ellipses in Fig. 4. 
The general level of the degree of desulphurization can be 
found promisingly well. 

Table 7. 10-fold cross-validation MSE 

model training test validation 
PLSR (correlation set) 0.2518(0.0033) 0.2574(0.0413) 0.2652(0.0022)
PLSR (MI-based set) 0.2862(0.0027) 0.2888(0.0279) 0.2707(0.0023)
GRNN (MI-based set) 0.2217(0.0023) 0.2468(0.0276) 0.3009(0.0051)
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Fig. 4.  The degree of desulphurization predicted by PLS 
regression and GRNN models during the validation period. 

 

4. DISCUSSION 

The results indicate that variable selection based on mutual 
information criteria is the most valid approach from the tested 
approaches in the considered context. The optimal way to 
quantize the process variables for the approach needs further 
research. The fact that industrial processes often involve non-
linear behaviour came up in the study. Variables or 
components chosen by linear methods gave worse non-linear 
predictions. On the other hand, the linear PLS regression 
models performed slightly better than the non-linear GRNN 
model considering the prediction error in validation. 
However, the GRNN was not optimised by searching for the 
optimal number of input variables and the optimal value of 
the kernel bandwidth of the network. The development of the 
model for the desulphurization benefits from the lags 
discovered by cross-correlation, because the dynamics of the 
process need to be taken into consideration.  

The use of score vectors from PCA or PLS regression in a 
neural network was the least promising approach in this 
study. However, Mohamad-Saleh and Hoyle (2008) use PCA 
successfully for the elimination of correlated information in 
the input data of a Multi-Layer Perceptron neural network. 
Linker (2005) use PCA scores as inputs to a sigmoid 
feedforward neural network. Lennox et al. (2001) also report 
the use of PCA and PCR in addition to cross-correlation in 
analysis of input and output variables for dynamic process 
models. Li et al. (2007) use PLS regression input and output 
scores combined with a Radial Basis Function neural 
network. To compare, only input scores were used as inputs 
to GRNN in this study. 

There are several potential methods not studied here. The use 
of another mutual information based algorithm, Partial 
Mutual Information (PMI), for input selection of GRNNs is 
reported in May et al. (2008) and Bowden et al. (2005). The 
use of Self-Organizing Maps solely or combined with other 
methods is reported by (Similä and Laine 2005; Bowden et 
al. 2005). Laurinen and Röning (2005) report the use of a 
Bayesian network and expert information in the selection of 
inputs to a feedforward neural network. The assistance from a 

     



 
 

     

 

process expert is generally reported being valuable in input 
variable selection (Simula and Alhoniemi, 1999; Lennox et 
al. 2001; Laurinen and Röning, 2005). 

Guyon and Elisseeff (2003) recommend selecting variables in 
two ways. Firstly, variables should be ranked using a 
correlation coefficient or mutual information, and secondly, a 
nested subset selection method performing forward or 
backward selection or multiplicative updates should be used. 
This study is in agreement with that. Considering the GRNN, 
the sets selected with mutual information based criteria 
performed the best. However, a good model is achieved by 
fine tuning, where the use of a wrapper or an embedded 
method seems inviting. 
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